Pair distribution function: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
mNo edit summary |
||
Line 2: | Line 2: | ||
([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as | ([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as | ||
:<math>{\rm g}_N^{(2)}( | :<math>{\rm g}_N^{(2)}({\mathbf r}_1,{\mathbf r}_2)= V^2 \frac{\int ... \int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_3...{\rm d}{\mathbf r}_N}{\int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_1...{\rm d}{\mathbf r}_N}</math> | ||
{\int ... \int e^{-\beta \Phi( | |||
{\int e^{-\beta \Phi( | |||
where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]]. | where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]]. | ||
Line 12: | Line 10: | ||
:<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) - \frac{\Phi(r_{13})}{kT} - E(r_{13}) \right)(g(r_{23}) -1) ~{\rm d}r_3</math> | :<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) - \frac{\Phi(r_{13})}{kT} - E(r_{13}) \right)(g(r_{23}) -1) ~{\rm d}r_3</math> | ||
where <math>r_{12} = |{\mathbf r}_2 - {\mathbf r}_1|</math>. | |||
==See also== | ==See also== | ||
*[[Radial distribution function]] | *[[Radial distribution function]] |
Revision as of 15:15, 10 July 2007
For a fluid of particles, enclosed in a volume at a given temperature (canonical ensemble) interacting via the `central' intermolecular pair potential , the two particle distribution function is defined as
where , where is the Boltzmann constant.
Exact convolution equation for
See Eq. 5.10 of Ref. 1:
where .