|  |   | 
| Line 4: | Line 4: | 
|  | H(x) = \left\{   |  | H(x) = \left\{   | 
|  | \begin{array}{ll} |  | \begin{array}{ll} | 
|  | 0           &  x < 0 \\ |  | 0 | 
|  | \frac{1}{2} &  x=0\\
 |  | 
|  | 1           &  x > 0
 |  | 
|  | \end{array} \right.
 |  | 
|  | </math>
 |  | 
|  |   |  | 
|  | Note that other definitions exist at <math>H(0)</math>, for example <math>H(0)=1</math>.
 |  | 
|  | In the famous [http://www.wolfram.com/products/mathematica/index.html Mathematica] computer
 |  | 
|  | package   <math>H(0)</math> is unevaluated. 
 |  | 
|  |   |  | 
|  | ==Applications==
 |  | 
|  | *[[Fourier analysis]]
 |  | 
|  | ==Differentiating the Heaviside  distribution==
 |  | 
|  | At first glance things are hopeless:
 |  | 
|  |   |  | 
|  | :<math>\frac{{\rm d}H(x)}{{\rm d}x}= 0, ~x \neq 0</math>
 |  | 
|  |   |  | 
|  | :<math>\frac{{\rm d}H(x)}{{\rm d}x}= \infty, ~x = 0</math>
 |  | 
|  |   |  | 
|  | however, lets define a less brutal jump in the form of a linear slope
 |  | 
|  | such that
 |  | 
|  |   |  | 
|  | :<math>H_{\epsilon}(x-a)= \frac{1}{\epsilon}\left( R(x - (a-\frac{\epsilon}{2})) - R (x - (a+\frac{\epsilon}{2}))\right)</math> 
 |  | 
|  |   |  | 
|  | in the limit <math>\epsilon \rightarrow 0</math> this becomes the Heaviside function
 |  | 
|  | <math>H(x-a)</math>. However, lets differentiate first:
 |  | 
|  |   |  | 
|  | :<math>\frac{{\rm d}}{{\rm d}x} H_{\epsilon}(x-a)= \frac{1}{\epsilon}\left( H(x - (a-\frac{\epsilon}{2})) - H (x - (a+\frac{\epsilon}{2}))\right)</math> 
 |  | 
|  |   |  | 
|  | in the limit this is the [[Dirac delta distribution]]. Thus 
 |  | 
|  |   |  | 
|  | :<math>\frac{{\rm d}}{{\rm d}x} [H(x)]= \delta(x)</math>.
 |  | 
|  | ==References==
 |  | 
|  | #[http://store.doverpublications.com/0486612724.html  Milton Abramowitz and  Irene A. Stegun "Handbook of Mathematical Functions" Dover Publications ninth printing.] 
 |  | 
|  | [[category:mathematics]]
 |  | 
		Revision as of 02:28, 5 July 2007
The Heaviside step distribution is defined by (Abramowitz and Stegun Eq. 29.1.3, p. 1020):
- <math>
H(x) = \left\{ 
\begin{array}{ll}
0