Grand canonical ensemble: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) |
Carl McBride (talk | contribs) No edit summary |
||
| Line 9: | Line 9: | ||
* Temperature, <math> \left. T \right. </math> | * Temperature, <math> \left. T \right. </math> | ||
== | == Grand canonical partition function == | ||
The classical grand canonical partition function for a one-component system in a three-dimensional space is given by: | The classical grand canonical partition function for a one-component system in a three-dimensional space is given by: | ||
| Line 16: | Line 16: | ||
where: | where: | ||
* | * ''N'' is the number of particles | ||
* <math> \left. \Lambda \right. </math> is the [[de Broglie thermal wavelength]] (which depends on the temperature) | * <math> \left. \Lambda \right. </math> is the [[de Broglie thermal wavelength]] (which depends on the temperature) | ||
Revision as of 16:33, 26 June 2007
The grand-canonical ensemble is particularly well suited to simulation studies of adsorption.
Ensemble variables
- Chemical potential, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\mu \right.}
- Volume,
- Temperature,
Grand canonical partition function
The classical grand canonical partition function for a one-component system in a three-dimensional space is given by:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{\mu VT}=\sum _{N=0}^{\infty }{\frac {\exp \left[\beta \mu N\right]V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}
where:
- N is the number of particles
- is the de Broglie thermal wavelength (which depends on the temperature)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = \frac{1}{k_B T} } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B } being the Boltzmann constant
- U is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( R^*\right)^{3N} } represent the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3N} position coordinates of the particles (reduced with the system size): i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d (R^*)^{3N} = 1 }
Helmholtz energy and partition function
The corresponding thermodynamic potential, the grand potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , for the aforementioned grand canonical partition function is:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega = \left. A - \mu N \right. } ,
where A is the Helmholtz energy function. Using the relation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.U\right.=TS -PV + \mu N}
one arrives at
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Omega \right.= -PV}
i.e.:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p V = k_B T \log Q_{\mu V T } \right. }