9-3 Lennard-Jones potential: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
mNo edit summary |
||
Line 5: | Line 5: | ||
: <math> | : <math> | ||
\Phi(r) = \frac{ 3 \sqrt{3}}{ 2} \epsilon \left[ \left( \frac{\sigma}{r} \right)^9 - | |||
\left( \frac{ \sigma }{r} \right)^3 \right]. | \left( \frac{ \sigma }{r} \right)^3 \right]. | ||
</math> | </math> | ||
The minimum value of <math> | where <math>\Phi(r)</math> is the [[intermolecular pair potential]]. | ||
The minimum value of <math> \Phi(r) </math> is obtained at <math> r = r_{min} </math>, with | |||
* <math> | * <math> \Phi \left( r_{min} \right) = - \epsilon </math>, | ||
* <math> \frac{ r_{min} }{\sigma} = 3^{1/6} </math> | * <math> \frac{ r_{min} }{\sigma} = 3^{1/6} </math> | ||
Line 27: | Line 28: | ||
Our aim is to compute the total interaction between this solid and a molecule located at a position <math> x_f > 0 </math>. | Our aim is to compute the total interaction between this solid and a molecule located at a position <math> x_f > 0 </math>. | ||
Such an interaction can be computed using cylindrical coordinates | Such an interaction can be computed using cylindrical coordinates. | ||
The interaction will be: | The interaction will be: | ||
:<math> | :<math> | ||
\Phi_{W} \left( x \right) = 4 \epsilon_{sf} \rho_{s} \int_{0}^{2\pi} d \phi \int_{-\infty}^{-x} d z \int_{0}^{\infty} \textrm{d r} | |||
\left[ \sigma^{12} \frac{ r} {(r^2 + z^2)^{6}} | \left[ \sigma^{12} \frac{ r} {(r^2 + z^2)^{6}} | ||
- \sigma^6 \frac{r}{(r^2 + z^2 )^{3} }\right] . | - \sigma^6 \frac{r}{(r^2 + z^2 )^{3} }\right] . | ||
Line 38: | Line 39: | ||
:<math> | :<math> | ||
\Phi_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} | |||
\left[ \frac{ \sigma^{12}} { 10 (r^2 + z^2)^5} | \left[ \frac{ \sigma^{12}} { 10 (r^2 + z^2)^5} | ||
- \frac{\sigma^6 }{ 4 (r^2 + z^2 )^{2} }\right]^{r=0}_{r=\infty} . | - \frac{\sigma^6 }{ 4 (r^2 + z^2 )^{2} }\right]^{r=0}_{r=\infty} . | ||
Line 44: | Line 45: | ||
: <math> | : <math> | ||
\Phi_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} | |||
\left[ \frac{ \sigma^{12}} { 10 z^{10} } | \left[ \frac{ \sigma^{12}} { 10 z^{10} } | ||
- \frac{\sigma^6 }{ 4 z^4 } \right]; | - \frac{\sigma^6 }{ 4 z^4 } \right]; | ||
Line 51: | Line 52: | ||
: <math> | : <math> | ||
\Phi_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_s | |||
\left[ - \frac{ \sigma^{12}} { 90 z^{9} } | \left[ - \frac{ \sigma^{12}} { 90 z^{9} } | ||
+ \frac{\sigma^6 }{ 12 z^3 } \right]_{z=-\infty}^{z=-x}; | + \frac{\sigma^6 }{ 12 z^3 } \right]_{z=-\infty}^{z=-x}; | ||
Line 57: | Line 58: | ||
: <math> | : <math> | ||
\Phi_{W} \left( x \right) = \frac{4 \pi \epsilon_{sf} \rho_s \sigma^3}{3} | |||
\left[ \frac{ \sigma^{9}} { 15 x^{9} } | \left[ \frac{ \sigma^{9}} { 15 x^{9} } | ||
- \frac{\sigma^3 }{ 2 x^3 } \right] | - \frac{\sigma^3 }{ 2 x^3 } \right] |
Revision as of 14:05, 21 June 2007
Functional form
The 9-3 Lennard-Jones potential is related to the standard Lennard-Jones potential.
It takes the form:
where is the intermolecular pair potential. The minimum value of is obtained at , with
- ,
Applications
It is commonly used to model the interaction between the particles of a fluid with a flat structureless solid wall.
Interaction between a solid and a fluid molecule
Let us consider the space divided in two regions:
- : this region is occupied by a diffuse solid with density composed of 12-6 Lennard-Jones atoms
with parameters and
Our aim is to compute the total interaction between this solid and a molecule located at a position . Such an interaction can be computed using cylindrical coordinates.
The interaction will be: