Replica method: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
One can apply this trick to the <math>\log Z_1</math> we want to average, and replace the resulting power <math>(Z_1)^s</math> by <math>s</math> copies of the expression for <math>Z_1</math> ''(replicas)''. The result is equivalent to evaluate <math>\overline{A}_1</math> as | One can apply this trick to the <math>\log Z_1</math> we want to average, and replace the resulting power <math>(Z_1)^s</math> by <math>s</math> copies of the expression for <math>Z_1</math> ''(replicas)''. The result is equivalent to evaluate <math>\overline{A}_1</math> as | ||
:<math> -\beta\overline{A}_1=\frac{Z^{\rm rep}(s)}{Z_0} </math>, | :<math> -\beta\overline{A}_1=\lim_{s\to 0}\frac{d}{ds}\left(\frac{Z^{\rm rep}(s)}{Z_0}\right) </math>, | ||
where <math>Z^{\rm rep}(s)</math> is the partition function of a mixture with Hamiltonian | where <math>Z^{\rm rep}(s)</math> is the partition function of a mixture with Hamiltonian | ||
Line 27: | Line 27: | ||
\left( H_{01}^\lambda (r^{N_1}_\lambda, q^{N_0}) + H_{11}^\lambda (r^{N_1}_\lambda, q^{N_0})\right).</math> | \left( H_{01}^\lambda (r^{N_1}_\lambda, q^{N_0}) + H_{11}^\lambda (r^{N_1}_\lambda, q^{N_0})\right).</math> | ||
This Hamiltonian describes a completely equilibrated system of <math>s+1</math> components; the matrix | This Hamiltonian describes a completely equilibrated system of <math>s+1</math> components; the matrix the <math>s</math> identical non-interacting replicas of the fluid. Since <math>Z_0=Z^{\rm rep}(0)</math>, then | ||
and the | |||
:<math>\lim_{s\to 0}\frac{d}{ds}[-\beta A^{\rm rep}(s)]=\lim_{s\to 0}\frac{d}{ds}\log Z^{\rm rep}(s)=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z^{\rm rep}(s)}=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z_0}=-\beta\overline{A}_1.</math> | |||
Thus the relation between the [[Helmholtz energy function]] of the non-equilibrium partially frozen system and the replicated (equilibrium) system is given by | |||
:<math>- \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ] | :<math>- \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ] | ||
</math>. | </math>. | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp. 965-974 (1975)] | #[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp. 965-974 (1975)] | ||
#[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General '''9''' pp. 1595-1603 (1976)] | #[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General '''9''' pp. 1595-1603 (1976)] |
Revision as of 16:02, 26 May 2007
The Helmholtz energy function of fluid in a matrix of configuration in the Canonical () ensemble is given by:
where is the fluid partition function, and , and are the pieces of the Hamiltonian corresponding to the fluid-fluid, fluid-matrix and matrix-matrix interactions. Assuming that the matrix is a configuration of a given fluid, with interaction hamiltonian , we can average over matrix configurations to obtain
(see Refs. 1 and 2)
- An important mathematical trick to get rid of the logarithm inside of the integral is to use the mathematical identity
- .
One can apply this trick to the we want to average, and replace the resulting power by copies of the expression for (replicas). The result is equivalent to evaluate as
- ,
where is the partition function of a mixture with Hamiltonian
This Hamiltonian describes a completely equilibrated system of components; the matrix the identical non-interacting replicas of the fluid. Since , then
Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen system and the replicated (equilibrium) system is given by
- .