Replica method: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: Free energy of fluid in a matrix of configuration <math>\{ q^{N_0} \}</math> in the Canonical (<math>NVT</math>) ensemble is given by: :<math>- \beta F_1 (q^{N_0}) = \log Z_1 (q^{N_0}) ...)
 
No edit summary
Line 1: Line 1:
Free energy of fluid in a matrix of configuration  
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
<math>\{ q^{N_0} \}</math> in the Canonical (<math>NVT</math>) ensemble is given by:
<math>\{ q^{N_0} \}</math> in the Canonical (<math>NVT</math>) ensemble is given by:


:<math>- \beta F_1 (q^{N_0}) = \log Z_1  (q^{N_0})
:<math>- \beta A_1 (q^{N_0}) = \log Z_1  (q^{N_0})
= \log \left( \frac{1}{N_1!}  
= \log \left( \frac{1}{N_1!}  
\int \exp [- \beta (H_{01}(r^{N_1}, q^{N_0}) + H_{11}(r^{N_1}, q^{N_0}) )]~d \{ r \}^{N_1} \right)</math>
\int \exp [- \beta (H_{01}(r^{N_1}, q^{N_0}) + H_{11}(r^{N_1}, q^{N_0}) )]~d \{ r \}^{N_1} \right)</math>


where <math>Z_1  (q^{N_0})</math> is the fluid partition function, and <math>H_{00}</math>
where <math>Z_1  (q^{N_0})</math> is the fluid [[partition function]], and <math>H_{00}</math>
is the Hamiltonian of the matrix.
is the Hamiltonian of the matrix.
Taking an average over matrix configurations gives
Taking an average over matrix configurations gives


:<math>- \beta \overline{F}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~  \log Z_1  (q^{N_0}) ~d \{  q \}^{N_0}</math>
:<math>- \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~  \log Z_1  (q^{N_0}) ~d \{  q \}^{N_0}</math>


\cite{JPFMP_1975_05_0965,JPAMG_1976_09_01595}
(Ref.s 1 and 2) An important mathematical trick to get rid of the logarithm inside of the integral is
Important mathematical trick to get rid of the logarithm inside of the integral:


:<math>\log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s</math>
:<math>\log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s</math>
Line 25: Line 24:
The Hamiltonian written in this form describes a completely equilibrated system
The Hamiltonian written in this form describes a completely equilibrated system
of <math>s+1</math> components; the matrix and <math>s</math> identical non-interacting copies (''replicas'') of the fluid.
of <math>s+1</math> components; the matrix and <math>s</math> identical non-interacting copies (''replicas'') of the fluid.
Thus the relation between the free energy of the non-equilibrium partially frozen
Thus the relation between the [[Helmholtz energy function]] of the non-equilibrium partially frozen
and the replica (equilibrium) system is given by
and the replica (equilibrium) system is given by


:<math>- \beta \overline{F}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta F^{\rm rep} (s) ]
:<math>- \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ]
</math>
</math>.
==References==
==References==
#[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson  "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp.  965-974  (1975)]
#[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson  "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp.  965-974  (1975)]
#[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General  '''9''' pp. 1595-1603 (1976)]
#[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General  '''9''' pp. 1595-1603 (1976)]

Revision as of 11:07, 22 May 2007

The Helmholtz energy function of fluid in a matrix of configuration in the Canonical () ensemble is given by:

where is the fluid partition function, and is the Hamiltonian of the matrix. Taking an average over matrix configurations gives

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~ \log Z_1 (q^{N_0}) ~d \{ q \}^{N_0}}

(Ref.s 1 and 2) An important mathematical trick to get rid of the logarithm inside of the integral is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta H^{\rm rep} (r^{N_1}, q^{N_0}) = \frac{\beta_0}{\beta}H_{00} (q^{N_0}) + \sum_{\lambda=1}^s \left( H_{01}^\lambda (r^{N_1}, q^{N_0}) + H_{11}^\lambda (r^{N_1}, q^{N_0})\right)}

The Hamiltonian written in this form describes a completely equilibrated system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s+1} components; the matrix and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} identical non-interacting copies (replicas) of the fluid. Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen and the replica (equilibrium) system is given by

.

References

  1. S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics 5 pp. 965-974 (1975)
  2. S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General 9 pp. 1595-1603 (1976)