Propane: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added critical point table)
m (→‎References: Added a recent publication)
Line 35: Line 35:
*[http://dx.doi.org/10.1063/1.469939 W.-N. Shen and P. A. Monson "Solid-fluid equilibrium in a nonlinear hard sphere triatomic model of propane", Journal of Chemical Physics '''103''' pp. 9756-9762 (1995)]
*[http://dx.doi.org/10.1063/1.469939 W.-N. Shen and P. A. Monson "Solid-fluid equilibrium in a nonlinear hard sphere triatomic model of propane", Journal of Chemical Physics '''103''' pp. 9756-9762 (1995)]
*[http://dx.doi.org/10.1080/0892702031000117270 Josep C. Pamies,  Clare McCabe,  Peter T. Cummings and Lourdes F. Vega "Coexistence Densities of Methane and Propane by Canonical Molecular Dynamics and Gibbs Ensemble Monte Carlo Simulations", Molecular Simulation '''29''' pp. 463-470 (2003)]
*[http://dx.doi.org/10.1080/0892702031000117270 Josep C. Pamies,  Clare McCabe,  Peter T. Cummings and Lourdes F. Vega "Coexistence Densities of Methane and Propane by Canonical Molecular Dynamics and Gibbs Ensemble Monte Carlo Simulations", Molecular Simulation '''29''' pp. 463-470 (2003)]
*[http://dx.doi.org/10.1063/1.4978412 Robert Hellmann "Intermolecular potential energy surface and thermophysical properties of propane", Journal of Chemical Physics '''146''' 114304 (2017)]
[[category: models]]
[[category: models]]
[[category: Contains Jmol]]
[[category: Contains Jmol]]

Revision as of 16:33, 23 March 2017


<jmol>

 <jmolApplet>
 <script>set spin X 10; spin on</script>
 <size>200</size>
 <color>lightgrey</color>
   <wikiPageContents>propane.pdb</wikiPageContents>
</jmolApplet>
</jmol>
Propane

Propane (C3H8).

Models

The NERD parameters are:

Molecule Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{\mathrm {CH}_3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{\mathrm {CH}_2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\mathrm {CH}_3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\mathrm {CH}_2}}
propane 3.857 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{\AA}} 3.93 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{\AA}} 102.6 K 45.8 K

Critical properties

The pressure, temperature and density at the critical point have been calculated for a virial equation of state using the TraPPE-UA force field, and are given in Table I of [1].

Method model Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c} (K) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_c} (g cm-3)
GEMC[2] TraPPE-UA 368 0.221
2Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} MD[3] flexible TraPPE-UA Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 363 \pm 5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.219 \pm 0.02}
2Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} MD[3] TraPPE-UA Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 348 \pm 2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.216 \pm 0.02}
2Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} MD[3] rigid TraPPE-UA Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 349 \pm 3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.225 \pm 0.02}

Virial coefficients

The virial coefficients Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_2} -Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_6} as a function of temperature for the TraPPE-UA force field have been tabulated by Schultz and Kofke [4].

References

Related reading