Kosterlitz-Thouless transition: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a little more)
m (Added an internal link)
 
Line 13: Line 13:


:<math>\frac{\pi J}{k_BT_c}-1 \approx \pi \tilde{y}_c(0) \exp\left(\frac{-\pi^2J}{k_BT_c} \right) \approx 0.12</math>
:<math>\frac{\pi J}{k_BT_c}-1 \approx \pi \tilde{y}_c(0) \exp\left(\frac{-\pi^2J}{k_BT_c} \right) \approx 0.12</math>
 
==See also==
*[[Universality classes#XY | XY universality class]]
==References==
==References==
<references/>
<references/>

Latest revision as of 13:16, 4 October 2016

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The Kosterlitz-Thouless transition (also known as the Berezinskii-Kosterlitz-Thouless (BKT) phase transition)[1] [2] [3] [4] is a phase transition found in the two-dimensional XY model. Below the transition temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{KT}} , the system plays host to a 'liquid' of vortex-antivortex pairs that have zero total vorticity. Above Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{KT}} these pairs break up into a gas of independent vortices.

For the XY model the critical temperature is given by (Eq.4 in [4]):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c = \frac{\pi J}{k_B}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} is the spin-spin coupling constant. This can be obtained as (Eq.58 in [4]):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi J}{k_BT_c}-1 \approx \pi \tilde{y}_c(0) \exp\left(\frac{-\pi^2J}{k_BT_c} \right) \approx 0.12}

See also[edit]

References[edit]

Related reading