9-3 Lennard-Jones potential: Difference between revisions
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
:<math> | :<math> | ||
V_{W} \left( x \right) = 4 \epsilon_{sf} \rho_{s} \int_{0}^{2\pi} d \phi \int_{-\infty}^{x} d z \int_{0}^{\infty} \textrm{d r} | V_{W} \left( x \right) = 4 \epsilon_{sf} \rho_{s} \int_{0}^{2\pi} d \phi \int_{-\infty}^{-x} d z \int_{0}^{\infty} \textrm{d r} | ||
\left[ \sigma^{12} (r^2 + z^2)^{ | \left[ \sigma^{12} \frac{ r} {(r^2 + z^2)^{6}} | ||
- \sigma^6 (r^2 + z^2 )^{ | - \sigma^6 \frac{r}{(r^2 + z^2 )^{3} }\right] . | ||
</math> | </math> | ||
:<math> | |||
V_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} | |||
\left[ \frac{ \sigma^{12}} { 10 (r^2 + z^2)^5} | |||
- \frac{\sigma^6 }{ 4 (r^2 + z^2 )^{2} }\right]^{r=0}_{r=\infty} . | |||
</math> | |||
: <math> | |||
V_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} | |||
\left[ \frac{ \sigma^{12}} { 10 z^{10} } | |||
- \frac{\sigma^6 }{ 4 z^4 } \right]; | |||
</math> | |||
: <math> | |||
V_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} | |||
\left[ \frac{ \sigma^{12}} { 10 z^{10} } | |||
- \frac{\sigma^6 }{ 4 z^4 } \right]; | |||
</math> | |||
[TO BE CONTINUED] | [TO BE CONTINUED] |
Revision as of 14:31, 23 March 2007
[EN CONSTRUCCION]
Functional form
The 9-3 Lennard-Jones potential is related to the standard Lennard-Jones potential.
It takes the form:
The minimum value of is obtained at , with
- ,
Applications
It is commonly used to model the interaction between the particles of a fluid with a flat structureless solid wall.
Interaction between a solid and a fluid molecule
Let us consider the space divided in two regions:
- : this region is occupied by a diffuse solid with density composed of 12-6 Lennard-Jones atoms
with paremeters and
Our aim is to compute the total interaction between this solid and a molecule located at a position . Such an interaction can be computed using cylindrical coordinates ( I GUESS SO, at least).
The interaction will be:
[TO BE CONTINUED]