Chemical potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
(See the discussion page)
Line 16: Line 16:
number of particles
number of particles


:<math>\mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = -\frac{3}{2} k_BT \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N}</math>
:<math>\mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = - k_B T \left[ \frac{3}{2} \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N} \right]</math>
 
where <math>Z_N</math> is the [[partition function]] for a fluid of <math>N</math>
where <math>Z_N</math> is the [[partition function]] for a fluid of <math>N</math>
identical particles
identical particles

Revision as of 11:14, 23 August 2013

Classical thermodynamics

Definition:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=\left. \frac{\partial G}{\partial N}\right\vert_{T,p} = \left. \frac{\partial A}{\partial N}\right\vert_{T,V}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} is the Gibbs energy function, leading to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=\frac{A}{Nk_B T} + \frac{pV}{Nk_BT}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is the Helmholtz energy function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume.

Statistical mechanics

The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = - k_B T \left[ \frac{3}{2} \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N} \right]}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N} is the partition function for a fluid of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} identical particles

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N}

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N} is the configurational integral

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N}

Kirkwood charging formula

The Kirkwood charging formula is given by [1]

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}(r)} is the pair correlation function.

See also

References

Related reading