Building up a diamond lattice: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
Line 34: Line 34:
== Atomic position(s) on a cubic cell ==
== Atomic position(s) on a cubic cell ==


* Number of atoms per cell: 4
* Number of atoms per cell: 8
* Coordinates:
* Coordinates:
Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math>
Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math>
Line 40: Line 40:
Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math>
Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math>


Atom 3: <math> \left( x_3, y_3, z_2 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) </math>
Atom 3: <math> \left( x_3, y_3, z_3 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) </math>
   
   
Atom 4: <math> \left( x_4, y_4, z_2 \right) = \left( \frac{l}{2}, \frac{l}{2}, 0  \right) </math>
Atom 4: <math> \left( x_4, y_4, z_4 \right) = \left( \frac{l}{2}, \frac{l}{2}, 0 \right) </math>
 
Atom 5: <math> \left( x_5, y_5, z_5 \right) = \left( \frac{l}{4}, \frac{l}{4}, \frac{l}{4}  \right) </math>
 
Atom 6: <math> \left( x_6, y_6, z_6 \right) = \left( \frac{l}{4}, \frac{3l}{4}, \frac{3l}{4}  \right) </math>
 
Atom 7: <math> \left( x_7, y_7, z_7 \right) = \left( \frac{3l}{4}, \frac{l}{4}, \frac{3l}{4}  \right) </math>
 
Atom 8: <math> \left( x_8, y_8, z_8 \right) = \left( \frac{3l}{4}, \frac{3l}{4}, \frac{l}{4} \right) </math>


Cell dimensions:  
Cell dimensions:  

Revision as of 17:42, 20 March 2007

[EN CONSTRUCCION]

  • Consider:
  1. a cubic simulation box whose sides are of length
  2. a number of lattice positions, given by ,

with being a positive integer

  • The positions are those given by:

where the indices of a given valid site are integer numbers that must fulfill the following criteria

  • ,
  • the sum of can have only the values: 0, 3, 4, 7, 8, 10, ...

i.e, ; OR; , with being any integer number

  • the indices must be either all even or all odd.

with

Atomic position(s) on a cubic cell

  • Number of atoms per cell: 8
  • Coordinates:

Atom 1:

Atom 2: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{2},y_{2},z_{2}\right)=\left(0,{\frac {l}{2}},{\frac {l}{2}}\right)}

Atom 3: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{3},y_{3},z_{3}\right)=\left({\frac {l}{2}},0,{\frac {l}{2}}\right)}

Atom 4: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{4},y_{4},z_{4}\right)=\left({\frac {l}{2}},{\frac {l}{2}},0\right)}

Atom 5:

Atom 6: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{6},y_{6},z_{6}\right)=\left({\frac {l}{4}},{\frac {3l}{4}},{\frac {3l}{4}}\right)}

Atom 7:

Atom 8:

Cell dimensions:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=b=c = l }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \beta = \gamma = 90^0 }