Cole equation of state: Difference between revisions
(New eos) |
Carl McBride (talk | contribs) m (Added book ISBN codes) |
||
| Line 1: | Line 1: | ||
The '''Cole equation of state''' <ref>R.H. Cole | The '''Cole equation of state''' <ref>R. H. Cole "Underwater Explosions", Princeton University Press (1948) ISBN 9780691069227</ref><ref> | ||
G.K. Batchelor | G. K. Batchelor "An introduction to fluid mechanics", Cambridge University Press (1974) ISBN 0521663962</ref> | ||
can be written, when atmospheric pressure is negligible, has the form | can be written, when atmospheric pressure is negligible, has the form | ||
Revision as of 14:11, 5 September 2011
The Cole equation of state [1][2] can be written, when atmospheric pressure is negligible, has the form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = B \left[ \left( \frac{\rho}{\rho_0} \right)^\gamma -1 \right]} .
In it, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_0} is a reference density around which the density varies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} is an exponent and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} is a pressure parameter.
Usually, the equation is used to model a nearly incompressible system. In this case, the exponent is often set to a value of 7, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} is large, in the following sense. The fluctuations of the density are related to the speed of sound as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\delta \rho}{\rho} = \frac{v^2}{c^2} ,}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} is the largest velocity, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is the speed of sound (the ratio Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v/c} is Mach's number). The speed of sound can be seen to be
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c^2 = \frac{\gamma B}{\rho_0}. }
Therefore, if , the relative density fluctuations will be of about 0.01.
References
- ↑ R. H. Cole "Underwater Explosions", Princeton University Press (1948) ISBN 9780691069227
- ↑ G. K. Batchelor "An introduction to fluid mechanics", Cambridge University Press (1974) ISBN 0521663962