Liquid phase density maximum: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added more material havind a supposed liquid tmd)
(Changed references to Cite format)
Line 1: Line 1:
{{Stub-general}}
There are a number of liquids that have a density maximum in the liquid phase. The most celebrated is that of [[water]], which was first reported in 1792<ref>[http://dx.doi.org/10.1098/rstl.1792.0026 Charles Blagden and George Gilpin "Supplementary Report on the Best Method of Proportioning the Excise upon Spirituous Liquors", Philosophical Transactions of the Royal Society of London '''82''' pp. 425-455 (1792)]</ref>. However, liquid [[helium]] 4 also has a maximum at 2.18 K (Ref. ??), liquid [[gallium]] at ??K (Ref. ??), [[silica]] at ??K (Ref. ??),  [[tellurium]] at ??K (Ref. ??), and [[germanium]] at ?? (Ref. ??)[[Bismuth]] appears not to have a density maximum within the liquid phase, however the "low temperature" liquid does appear to be denser than the "high temperature" solid (Ref. <ref>[http://dx.doi.org/10.1007/s10740-005-0075-7 S. V. Stankus, R. A. Khairulin, A. G. Mozgovoi, V. V. Roshchupkin and M. A. Pokrasin "An Experimental Investigation of the Density of Bismuth in the Condensed State in a Wide Temperature Range", High Temperature '''43''' pp. 368-378 (2005)]</ref>),
There are a number of liquids that have a density maximum in the liquid phase. The most celebrated is that of [[water]]. However, liquid [[helium]] 4 also has a maximum at 2.18 K (Ref. ??), liquid [[gallium]] at ??K (Ref. ??), [[silica]] at ??K (Ref. ??),  [[tellurium]] at ??K (Ref. ??), [[bismuth]] at ?? (Ref. ??), and [[germanium]] at ?? (Ref. ??).
==Historical papers==
Water:
#[http://dx.doi.org/10.1098/rstl.1792.0026 Charles Blagden and George Gilpin "Supplementary Report on the Best Method of Proportioning the Excise upon Spirituous Liquors", Philosophical Transactions of the Royal Society of London '''82''' pp. 425-455 (1792)]
==Water==
==Water==
:{| border="1"
:{| border="1"
Line 9: Line 5:
| System || model || <math>T_{\mathrm {TMD}}</math> (K) || density at <math>T=T_{\mathrm {TMD}}</math> (Kg/m<sup>3</sup>) || Reference
| System || model || <math>T_{\mathrm {TMD}}</math> (K) || density at <math>T=T_{\mathrm {TMD}}</math> (Kg/m<sup>3</sup>) || Reference
|-   
|-   
| H<sub>2</sub>O || experimental  ||  277.134 || 999.972 ||Ref. 1
| H<sub>2</sub>O || experimental  ||  277.134 || 999.972 ||<ref name="Franks">Felix Franks "Water A matrix of life", Royal Society of Chemistry 2nd Edition (2000) ISBN 978-0-85404-583-9  Table 3.5</ref>
|-   
|-   
| D<sub>2</sub>O || experimental  ||  284.335 || 1106.00 || Ref. 1
| D<sub>2</sub>O || experimental  ||  284.335 || 1106.00 || <ref name="Franks"> </ref>
|-   
|-   
| T<sub>2</sub>O || experimental  ||  286.553 || 1215.01 ||Ref. 1
| T<sub>2</sub>O || experimental  ||  286.553 || 1215.01 || <ref name="Franks"> </ref>
|-   
|-   
| H<sub>2</sub>O || [[ST2]]  ||  300  || ||Ref. 2
| H<sub>2</sub>O || [[ST2]]  ||  300  || || <ref>[http://dx.doi.org/10.1063/1.1681229  Frank H. Stillinger and Aneesur Rahman "Improved simulation of liquid water by molecular dynamics", Journal of Chemical Physics '''60''' pp. 1545-1557 (1974)]</ref>
|-   
|-   
| H<sub>2</sub>O || [[TIPS2]]  ||  298 <math>\pm</math> 25 || || Ref. 3
| H<sub>2</sub>O || [[TIPS2]]  ||  298 <math>\pm</math> 25 || || <ref>[http://dx.doi.org/10.1063/1.444325 William L. Jorgensen "Revised TIPS for simulations of liquid water and aqueous solutions", Journal of Chemical Physics '''77''' pp. 4156- (1982)]</ref>
|-   
|-   
| H<sub>2</sub>O || [[SPC]]  ||  228 || 1008 || Ref. 5
| H<sub>2</sub>O || [[SPC]]  ||  228 || 1008 || <ref name="vegaAbascal"> [http://dx.doi.org/10.1063/1.2056539 C. Vega and J. L. F. Abascal "Relation between the melting temperature and the temperature of maximum density for the most common models of water", Journal of Chemical Physics '''123''' 144504 (2005)] </ref>
|-   
|-   
| H<sub>2</sub>O || [[SPC/E]]  || 241  || 1012 || Ref. 6
| H<sub>2</sub>O || [[SPC/E]]  || 241  || 1012 || <ref>[http://dx.doi.org/10.1080/0892702031000152172 Taras Bryk and A. D. J. Haymet "The Ice/Water Interface: Density-Temperature Phase Diagram for the SPC/E Model of Liquid Water", Molecular Simulation '''30''' pp. 131-135 (2004)]</ref>
|-   
|-   
| H<sub>2</sub>O || [[TIP3P]]  ||  182 || 1038 || Ref. 5
| H<sub>2</sub>O || [[TIP3P]]  ||  182 || 1038 || <ref name="vegaAbascal"> </ref>
|-   
|-   
| H<sub>2</sub>O || [[TIP4P]]  ||  253 || 1008 || Ref. 5
| H<sub>2</sub>O || [[TIP4P]]  ||  253 || 1008 || <ref name="vegaAbascal"> </ref>
|-   
|-   
| H<sub>2</sub>O || [[TIP4P/Ew]]  || 273  || 1000 || Ref. 7
| H<sub>2</sub>O || [[TIP4P/Ew]]  || 273  || 1000 || <ref>[http://dx.doi.org/10.1063/1.1683075    Hans W. Horn, William C. Swope,  Jed W. Pitera,      Jeffry D. Madura, Thomas J. Dick, Greg L. Hura and  Teresa Head-Gordon "Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew", Journal of Chemical Physics '''120''' pp. 9665-9678 (2004)]</ref>
|-
|-
| H<sub>2</sub>O || [[TIP4P/Ice]]  ||  295 || 994  || Ref. 5
| H<sub>2</sub>O || [[TIP4P/Ice]]  ||  295 || 994  || <ref name="vegaAbascal"> </ref>
|-
|-
| H<sub>2</sub>O || [[TIP5P]]  ||  285 || 989 || Ref. 5
| H<sub>2</sub>O || [[TIP5P]]  ||  285 || 989 || <ref name="vegaAbascal"> </ref>
|-
|-
| H<sub>2</sub>O || [[TIP5P-E]]  ||  282 || 1004 || Ref. 8
| H<sub>2</sub>O || [[TIP5P-E]]  ||  282 || 1004 || <ref>[http://dx.doi.org/10.1063/1.1652434 Steven W. Rick "A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums", Journal of Chemical Physics '''120''' 6085 (2004)]</ref>
|-
|-
| H<sub>2</sub>O || [[TIP4P/2005]]  ||  278 || 1000.5  || Ref. 9
| H<sub>2</sub>O || [[TIP4P/2005]]  ||  278 || 1000.5  || <ref>[http://dx.doi.org/10.1063/1.2121687    J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, '''123''' 234505 (2005)]</ref>
|-
|-
| H<sub>2</sub>O || [[TIP4PQ/2005]]  ||  280 ||  999.2  || Ref. 10
| H<sub>2</sub>O || [[TIP4PQ/2005]]  ||  280 ||  999.2  || <ref>[http://dx.doi.org/10.1063/1.3239471 E. G. Noya, C. Vega, L. M. Sesé, and R. Ramírez "Quantum effects on the maximum in density of water as described by the TIP4PQ/2005 model", Journal of Chemical Physics '''131''' 124518 (2009)]</ref>
|-
|-
|}
|}
===References for water===
===References===
#Felix Franks "Water A matrix of life", Royal Society of Chemistry 2nd Edition (2000) ISBN 978-0-85404-583-9  Table 3.5
<references/>
#[http://dx.doi.org/10.1063/1.1681229  Frank H. Stillinger and Aneesur Rahman "Improved simulation of liquid water by molecular dynamics", Journal of Chemical Physics '''60''' pp. 1545-1557 (1974)]
;Related reading
#[http://dx.doi.org/10.1063/1.444325 William L. Jorgensen "Revised TIPS for simulations of liquid water and aqueous solutions", Journal of Chemical Physics '''77''' pp. 4156- (1982)]
*[http://dx.doi.org/10.1063/1.467029 S. R. Billeter, P. M. King, and W. F. van Gunsteren "Can the density maximum of water be found by computer simulation?", Journal of Chemical Physics '''100''' pp. 6692 (1994)]
#[http://dx.doi.org/10.1063/1.467029 S. R. Billeter, P. M. King, and W. F. van Gunsteren "Can the density maximum of water be found by computer simulation?", Journal of Chemical Physics '''100''' pp. 6692 (1994)]
#[http://dx.doi.org/10.1063/1.2056539 C. Vega and J. L. F. Abascal "Relation between the melting temperature and the temperature of maximum density for the most common models of water", Journal of Chemical Physics '''123''' 144504 (2005)]
#[http://dx.doi.org/10.1080/0892702031000152172 Taras Bryk and A. D. J. Haymet "The Ice/Water Interface: Density-Temperature Phase Diagram for the SPC/E Model of Liquid Water", Molecular Simulation '''30''' pp. 131-135 (2004)]
#[http://dx.doi.org/10.1063/1.1683075    Hans W. Horn, William C. Swope,  Jed W. Pitera,      Jeffry D. Madura, Thomas J. Dick, Greg L. Hura and  Teresa Head-Gordon "Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew", Journal of Chemical Physics '''120''' pp. 9665-9678 (2004)]
#[http://dx.doi.org/10.1063/1.1652434 Steven W. Rick "A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums", Journal of Chemical Physics '''120''' 6085 (2004)]
#[http://dx.doi.org/10.1063/1.2121687    J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, '''123''' 234505 (2005)]
#[http://dx.doi.org/10.1063/1.3239471 E. G. Noya, C. Vega, L. M. Sesé, and R. Ramírez "Quantum effects on the maximum in density of water as described by the TIP4PQ/2005 model", Journal of Chemical Physics '''131''' 124518 (2009)]
{{numeric}}
{{numeric}}
[[category: water]]
[[category: water]]

Revision as of 15:44, 8 July 2011

There are a number of liquids that have a density maximum in the liquid phase. The most celebrated is that of water, which was first reported in 1792[1]. However, liquid helium 4 also has a maximum at 2.18 K (Ref. ??), liquid gallium at ??K (Ref. ??), silica at ??K (Ref. ??), tellurium at ??K (Ref. ??), and germanium at ?? (Ref. ??). Bismuth appears not to have a density maximum within the liquid phase, however the "low temperature" liquid does appear to be denser than the "high temperature" solid (Ref. [2]),

Water

System model (K) density at (Kg/m3) Reference
H2O experimental 277.134 999.972 [3]
D2O experimental 284.335 1106.00 [3]
T2O experimental 286.553 1215.01 [3]
H2O ST2 300 [4]
H2O TIPS2 298 25 [5]
H2O SPC 228 1008 [6]
H2O SPC/E 241 1012 [7]
H2O TIP3P 182 1038 [6]
H2O TIP4P 253 1008 [6]
H2O TIP4P/Ew 273 1000 [8]
H2O TIP4P/Ice 295 994 [6]
H2O TIP5P 285 989 [6]
H2O TIP5P-E 282 1004 [9]
H2O TIP4P/2005 278 1000.5 [10]
H2O TIP4PQ/2005 280 999.2 [11]

References

  1. Charles Blagden and George Gilpin "Supplementary Report on the Best Method of Proportioning the Excise upon Spirituous Liquors", Philosophical Transactions of the Royal Society of London 82 pp. 425-455 (1792)
  2. S. V. Stankus, R. A. Khairulin, A. G. Mozgovoi, V. V. Roshchupkin and M. A. Pokrasin "An Experimental Investigation of the Density of Bismuth in the Condensed State in a Wide Temperature Range", High Temperature 43 pp. 368-378 (2005)
  3. 3.0 3.1 3.2 Felix Franks "Water A matrix of life", Royal Society of Chemistry 2nd Edition (2000) ISBN 978-0-85404-583-9 Table 3.5
  4. Frank H. Stillinger and Aneesur Rahman "Improved simulation of liquid water by molecular dynamics", Journal of Chemical Physics 60 pp. 1545-1557 (1974)
  5. William L. Jorgensen "Revised TIPS for simulations of liquid water and aqueous solutions", Journal of Chemical Physics 77 pp. 4156- (1982)
  6. 6.0 6.1 6.2 6.3 6.4 C. Vega and J. L. F. Abascal "Relation between the melting temperature and the temperature of maximum density for the most common models of water", Journal of Chemical Physics 123 144504 (2005)
  7. Taras Bryk and A. D. J. Haymet "The Ice/Water Interface: Density-Temperature Phase Diagram for the SPC/E Model of Liquid Water", Molecular Simulation 30 pp. 131-135 (2004)
  8. Hans W. Horn, William C. Swope, Jed W. Pitera, Jeffry D. Madura, Thomas J. Dick, Greg L. Hura and Teresa Head-Gordon "Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew", Journal of Chemical Physics 120 pp. 9665-9678 (2004)
  9. Steven W. Rick "A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums", Journal of Chemical Physics 120 6085 (2004)
  10. J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, 123 234505 (2005)
  11. E. G. Noya, C. Vega, L. M. Sesé, and R. Ramírez "Quantum effects on the maximum in density of water as described by the TIP4PQ/2005 model", Journal of Chemical Physics 131 124518 (2009)
Related reading
This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.