TIP3P model of water: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Changed a reference to Cite format.) |
Carl McBride (talk | contribs) m (Added a recent publication) |
||
Line 8: | Line 8: | ||
==References== | ==References== | ||
<references/> | <references/> | ||
;Related reading | |||
*[http://dx.doi.org/10.1063/1.3548869 Péter T. Kiss and András Baranyai "Sources of the deficiencies in the popular SPC/E and TIP3P models of water", Journal of Chemical Physics '''134''' 054106 (2011)] | |||
[[category:models]] | [[category:models]] | ||
[[category:water]] | [[category:water]] |
Revision as of 13:43, 2 February 2011
Parameters
Surface tension
The surface tension has been studied for the TIP3P model by Vega and Miguel [2]
Shear viscosity
The shear viscosity for the TIP3P model is 0.321 mPa.s at 298 K and 1 bar [3] (experimental value 0.896 mPa.s [4]).
References
- ↑ William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey and Michael L. Klein "Comparison of simple potential functions for simulating liquid water", Journal of Chemical Physics 79 pp. 926-935 (1983)
- ↑ C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics 126 154707 (2007)
- ↑ Miguel Angel González and José L. F. Abascal "The shear viscosity of rigid water models", Journal of Chemical Physics 132 096101 (2010)
- ↑ Kenneth R. Harris and Lawrence A. Woolf "Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures", Journal of Chemical & Engineering Data 49 pp. 1064-1069 (2004)
- Related reading