Stockmayer potential: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→References: Added a reference) |
Carl McBride (talk | contribs) m (Added original reference) |
||
Line 1: | Line 1: | ||
The '''Stockmayer potential''' consists of the [[Lennard-Jones model]] with an embedded point [[Dipole moment |dipole]]. Thus the Stockmayer potential becomes: | The '''Stockmayer potential''' consists of the [[Lennard-Jones model]] with an embedded point [[Dipole moment |dipole]]. Thus the Stockmayer potential becomes (Eq. 1 <ref>[http://dx.doi.org/10.1063/1.1750922 W. H. Stockmayer "Second Virial Coefficients of Polar Gases", Journal of Chemical Physics '''9''' pp. 398-402 (1941)]</ref>): | ||
:<math> \Phi_{12}(r, \theta_1, \theta_2, \phi) = 4 \epsilon \left[ \left(\frac{\sigma}{r} \right)^{12}- \left( \frac{\sigma}{r}\right)^6 \right] - \frac{\mu_1 \mu_2}{4\pi \epsilon_0 r^3} \left(2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \phi\right) </math> | :<math> \Phi_{12}(r, \theta_1, \theta_2, \phi) = 4 \epsilon \left[ \left(\frac{\sigma}{r} \right)^{12}- \left( \frac{\sigma}{r}\right)^6 \right] - \frac{\mu_1 \mu_2}{4\pi \epsilon_0 r^3} \left(2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \phi\right) </math> |
Revision as of 12:21, 3 December 2010
The Stockmayer potential consists of the Lennard-Jones model with an embedded point dipole. Thus the Stockmayer potential becomes (Eq. 1 [1]):
where:
- is the intermolecular pair potential between two particles at a distance r;
- is the diameter (length), i.e. the value of at ;
- : well depth (energy)
- is the permittivity of the vacuum
- is the dipole moment
- is the inclination of the two dipole axes with respect to the intermolecular axis.
- is the azimuth angle between the two dipole moments
If one defines the reduced dipole moment,
one can rewrite the expression as
For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.
Critical properties
In the range [2]:
References
Related reading
- M. E. van Leeuwen "Derivation of Stockmayer potential parameters for polar fluids", Fluid Phase Equilibria 99 pp. 1-18 (1994)
- Reinhard Hentschke, Jörg Bartke, and Florian Pesth "Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid", Physical Review E 75 011506 (2007)