Gibbs-Duhem integration: Difference between revisions
| Line 63: | Line 63: | ||
differential equation: | differential equation: | ||
<math> d(\beta p) = - \frac{ \Delta \bar{L} }{\Delta \bar{V} } d \lambda. </math> | <math> d(\beta p) = - \frac{ \Delta \bar{L} }{\Delta \bar{V} } d \lambda. </math> (Eq. 1) | ||
The Gibbs-Duhem integration technique, for this example, will be a numerical procedure covering the following tasks: | |||
* Computer simulation (for instance using [[Metropolis Monte Carlo]]) runs to estimate the values of <math> \bar{L}, \bar{V} </math> for both | |||
phases at given values of <math> [\beta, \beta p, \lambda ] </math>. | |||
* A procedure to solve numerically the differential equation (Eq.1) | |||
== References == | == References == | ||
#[http://dx.doi.org/10.1080/00268979300100881 David A. Kofke, Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation, Mol. Phys. '''78''' , pp 1331 - 1336 (1993)] | #[http://dx.doi.org/10.1080/00268979300100881 David A. Kofke, Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation, Mol. Phys. '''78''' , pp 1331 - 1336 (1993)] | ||
#[http://dx.doi.org/10.1063/1.465023 David A. Kofke, Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line, J. Chem. Phys. '''98''' ,pp. 4149-4162 (1993) ] | #[http://dx.doi.org/10.1063/1.465023 David A. Kofke, Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line, J. Chem. Phys. '''98''' ,pp. 4149-4162 (1993) ] | ||
Revision as of 15:48, 2 March 2007
CURRENTLY THIS ARTICLE IS UNDER CONSTRUCTION
History
The so-called Gibbs-Duhem Integration referes to a number of methods that couple molecular simulation techniques with thermodynamic equations in order to draw phase coexistence lines.
The method was proposed by Kofke (Ref 1-2).
Basic Features
Consider two thermodynamic phases: and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b } , at thermodynamic equilibrium at certain conditions. The thermodynamic equilibrium implies:
- Equal temperature in both phases: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T = T_{a} = T_{b} } , i.e. thermal equilbirum.
- Equal pressure in both phases Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = p_{a} = p_{b} } , i.e. mechanical equilbrium.
- Equal chemical potentials for the components Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_i = \mu_{ia} = \mu_{ib} } , i.e. material equilibrium.
In addition if we are dealing with a statistical mechanics model, with certain parameters that we can represent as , the model should be the same in both phases.
Example: phase equilibria of one-component system
Notice: The derivation that follows is just a particular route to perform the integration
- Consider that at given conditions of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T , p, \lambda } two phases of the systems are at equilibrium, this implies:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_{a} \left( T, p, \lambda \right) = \mu_{b} \left( T, p, \lambda \right) }
Given the thermal equilibrium we can also write:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \mu_{a} \left( \beta, \beta p, \lambda \right) = \beta \mu_{b} \left( \beta, \beta p, \lambda \right) }
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = 1/k_B T } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B } is the Boltzmann constant
When a differential change of the conditions is performed we wil have for any phase:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left( \beta\mu \right) = \left[ \frac{ \partial (\beta \mu) }{\partial \beta} \right]_{\beta p,\lambda} d \beta + \left[ \frac{ \partial (\beta \mu) }{\partial (\beta p)} \right]_{\beta,\lambda} d (\beta p) + \left[ \frac{ \partial (\beta \mu) }{\partial \lambda} \right]_{\beta,\beta p} d \lambda. }
Taking into account that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu } is the Gibbs free energy per particle
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left( \beta\mu \right) = \frac{E}{N} d \beta + \frac{ V }{N } d (\beta p) + \left[ \frac{ \partial (\beta \mu) }{\partial \lambda} \right]_{\beta,\beta p} d \lambda. }
Let us use a bar to design quantities divided by the number of particles: e.g. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{E} = E/N; \bar{V} = V/N } ; and taking into account the definition:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{L} \equiv \frac{1}{N} \left[ \frac {\partial (\beta \mu )}{\partial \lambda }\right]_{\beta,\beta p} }
Again, let us suppose that we have a phase coexistence at a point given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ \beta_0, (\beta p)_0, \lambda_0 \right]} and that we want to modify slightly the conditions. In order to keep the system at the coexistence conditions:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left[ \beta \mu_{a} - \beta \mu_b \right] = 0 }
Therefore, to keep the system on the coexistence conditions, the changes in the variables Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta, (\beta p), \lambda } are constrained to fulfill:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \Delta \bar{E} \right) d \beta + \left( \Delta \bar{V} \right) d (\beta p) + \left(\Delta \bar{L} \right) d \lambda = 0 }
whrere for any porperty Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X } we can define: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta X \equiv X_a - X_b } (i.e. the difference between the values of the property in the phases). Taking a path with, for instance constante Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta } , the coexistence line will follow the trajectory produced by the solution of the differential equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(\beta p) = - \frac{ \Delta \bar{L} }{\Delta \bar{V} } d \lambda. } (Eq. 1)
The Gibbs-Duhem integration technique, for this example, will be a numerical procedure covering the following tasks:
- Computer simulation (for instance using Metropolis Monte Carlo) runs to estimate the values of for both
phases at given values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\beta, \beta p, \lambda ] } .
- A procedure to solve numerically the differential equation (Eq.1)
References
- David A. Kofke, Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation, Mol. Phys. 78 , pp 1331 - 1336 (1993)
- David A. Kofke, Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line, J. Chem. Phys. 98 ,pp. 4149-4162 (1993)