Grand canonical ensemble: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| m (New page: == Ensemble variables ==   * Chemical Potential, <math> \left. \mu \right.  </math>  * Volume, <math> V </math>  * Temperature, <math> T </math>  == Partition Function ==  ''Classical'' Pa...) | |||
| Line 10: | Line 10: | ||
| == Partition Function == | == Partition Function == | ||
| ''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{ | ''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{\mu VT} </math> | ||
| :<math> Q_{ | :<math> Q_{\mu VT} = \sum_{N=0}^{\infty} \frac{ \exp \left[ \beta \mu N \right] V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math> | ||
| where: | where: | ||
Revision as of 15:10, 28 February 2007
Ensemble variables
- Chemical Potential,
- Volume,
- Temperature,
Partition Function
Classical Partition Function (one-component system) in a three-dimensional space:
where:
- is the de Broglie thermal wavelength (depends on the temperature)
- , with being the Boltzmann constant
- is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
- represent the 3N position coordinates of the particles (reduced with the system size): i.e.
Free energy and Partition Function
Free energy and Partition Function
The Helmholtz energy function is related to the canonical partition function via: