Ice Ih: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Melting point: Placed list in numerical order)
Line 3: Line 3:
The proton ordered form of ice Ih is known as [[ice XI]], which (in principle) forms when ice Ih is cooled to below 72K (it is usually doped with KOH to aid the transition).
The proton ordered form of ice Ih is known as [[ice XI]], which (in principle) forms when ice Ih is cooled to below 72K (it is usually doped with KOH to aid the transition).
==Melting point==
==Melting point==
The following is a collection of melting points <math>(T_m)</math> for the ice Ih-[[water]] transition (experimental value is 273.15 K at 1 bar):
The following is a collection of melting points <math>(T_m)</math> for the ice Ih-[[water]] transition:
:{| border="1"
:{| border="1"
|-  
|-  
| <math>T_m</math> || Pressure || [[Water models|Water model]]/technique  || Reference
| <math>T_m</math> || Pressure || [[Water models|Water model]]/technique  || Reference
|- 
|<math>146~K</math> || 1 bar || [[TIP3P]]  || <ref name="multiple3">  </ref>
|-   
|-   
|<math>190~K</math> || 1 bar || [[SPC]]  || <ref name="multiple3"> [http://dx.doi.org/10.1039/b805531a C. Vega, J. L. F. Abascal, M. M. Conde and J. L. Aragones "What ice can teach us about water interactions: a critical comparison of the performance of different water models", Faraday Discussions '''141''' pp. 251-276 (2009)] </ref>
|<math>190~K</math> || 1 bar || [[SPC]]  || <ref name="multiple3"> [http://dx.doi.org/10.1039/b805531a C. Vega, J. L. F. Abascal, M. M. Conde and J. L. Aragones "What ice can teach us about water interactions: a critical comparison of the performance of different water models", Faraday Discussions '''141''' pp. 251-276 (2009)] </ref>
|-
|-
|<math>215(4)~K</math> || 1 bar || [[SPC/E]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
|<math>215(4)~K</math> || 1 bar || [[SPC/E]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
|-
|-  
|<math>146~K</math> || 1 bar || [[TIP3P]] || <ref name="multiple3"> </ref>
| <math>227.65 \pm 1.5~K</math> || 1 bar || [[TTM2.1-F]] ([[Path integral formulation |quantum]]) || <ref name="multiple4"> </ref>
|-
|-
|<math>232(4)~K</math> || 1 bar ||[[TIP4P]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1">[http://dx.doi.org/10.1080/00268970600967948  Carlos Vega, Maria Martin-Conde and Andrzej Patrykiejew "Absence of superheating for ice Ih with a free surface: a new method of determining the melting point of different water models", Molecular Physics '''104''' pp. 3583-3592 (2006)] </ref>
|<math>232(4)~K</math> || 1 bar ||[[TIP4P]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1">[http://dx.doi.org/10.1080/00268970600967948  Carlos Vega, Maria Martin-Conde and Andrzej Patrykiejew "Absence of superheating for ice Ih with a free surface: a new method of determining the melting point of different water models", Molecular Physics '''104''' pp. 3583-3592 (2006)] </ref>
|-
|-  
|<math>272(6)~K</math> || 1 bar ||[[TIP4P/Ice]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
| <math>242.65 \pm 1.5~K</math> || 1 bar || [[TTM2.1-F]] (classical) || <ref name="multiple4" >[http://dx.doi.org/10.1021/jp710640e Francesco Paesani and Gregory A. Voth "Quantum Effects Strongly Influence the Surface Premelting of Ice", Journal of Physical Chemistry C '''112''' pp. 324-327 (2008)]</ref>
|-
|-
|<math>245.5(6)~K</math> || 1 bar || [[TIP4P/Ew]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
|<math>245.5(6)~K</math> || 1 bar || [[TIP4P/Ew]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
|-
|-
| <math>252(6)~K</math>  ||  1 bar || [[TIP4P/2005]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
| <math>252(6)~K</math>  ||  1 bar || [[TIP4P/2005]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
|-
|<math>272(6)~K</math> || 1 bar ||[[TIP4P/Ice]] / [[Computation of phase equilibria | free energy calculation]] || <ref name="multiple1"> </ref>
|-
| <math>273.15 K</math> || 1 bar || <FONT COLOR="#9400D3">experimental value</FONT> ||
|-   
|-   
|<math>274~K</math> || 1 bar || [[TIP5P]]  || <ref name="multiple3">  </ref>
|<math>274~K</math> || 1 bar || [[TIP5P]]  || <ref name="multiple3">  </ref>
|-   
|-   
|<math>289~K</math> || 1 bar || [[NvdE]]  || <ref>[http://dx.doi.org/10.1063/1.2360276    José L. F. Abascal, Ramón García Fernández, Carlos Vega and  Marcelo A. Carignano, "The melting temperature of the six site potential model of water", Journal of Chemical Physics, '''125''' 166101 (2006)]</ref>
|<math>289~K</math> || 1 bar || [[NvdE]]  || <ref>[http://dx.doi.org/10.1063/1.2360276    José L. F. Abascal, Ramón García Fernández, Carlos Vega and  Marcelo A. Carignano, "The melting temperature of the six site potential model of water", Journal of Chemical Physics, '''125''' 166101 (2006)]</ref>
|-
| <math>411 \pm 4~K</math>  ||10,000 bar ||  [[Becke-Lee-Yang-Parr functional]] ||  <ref name="multiple2"> </ref>
|-
|-
|  <math>417\pm 3~K</math>  || 2500 bar ||  [[Perdew-Burke-Ernzerhof functional]] ||  <ref name="multiple2">[http://dx.doi.org/10.1063/1.3153871 Soohaeng Yoo, Xiao Cheng Zeng, and Sotiris S. Xantheas "On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals", Journal of Chemical Physics '''130''' 221102 (2009)]</ref>
|  <math>417\pm 3~K</math>  || 2500 bar ||  [[Perdew-Burke-Ernzerhof functional]] ||  <ref name="multiple2">[http://dx.doi.org/10.1063/1.3153871 Soohaeng Yoo, Xiao Cheng Zeng, and Sotiris S. Xantheas "On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals", Journal of Chemical Physics '''130''' 221102 (2009)]</ref>
|-
| <math>411 \pm 4~K</math>  ||10,000 bar ||  [[Becke-Lee-Yang-Parr functional]] ||  <ref name="multiple2"> </ref>
|-
| <math>242.65 \pm 1.5~K</math> || 1 bar || [[TTM2.1-F]] (classical) || <ref name="multiple4" >[http://dx.doi.org/10.1021/jp710640e Francesco Paesani and Gregory A. Voth "Quantum Effects Strongly Influence the Surface Premelting of Ice", Journal of Physical Chemistry C '''112''' pp. 324-327 (2008)]</ref>
|-
| <math>227.65 \pm 1.5~K</math> || 1 bar || [[TTM2.1-F]] (quantum) || <ref name="multiple4"> </ref>
|}
|}
'''Related reading'''
'''Related reading'''

Revision as of 13:41, 30 June 2009

Ice Ih (hexagonal ice) is a proton disordered ice phase having the space group P63/mmc. Ice Ih has the following lattice parameters at 250 K: a=4.51842 Å, , and c=7.35556 Å with four molecules per unit cell (in Table 3 of [1]). The proton ordered form of ice Ih is known as ice XI, which (in principle) forms when ice Ih is cooled to below 72K (it is usually doped with KOH to aid the transition).

Melting point

The following is a collection of melting points for the ice Ih-water transition:

Pressure Water model/technique Reference
1 bar TIP3P [2]
1 bar SPC [2]
1 bar SPC/E / free energy calculation [3]
1 bar TTM2.1-F (quantum) [4]
1 bar TIP4P / free energy calculation [3]
1 bar TTM2.1-F (classical) [4]
1 bar TIP4P/Ew / free energy calculation [3]
1 bar TIP4P/2005 / free energy calculation [3]
1 bar TIP4P/Ice / free energy calculation [3]
1 bar experimental value
1 bar TIP5P [2]
1 bar NvdE [5]
10,000 bar Becke-Lee-Yang-Parr functional [6]
2500 bar Perdew-Burke-Ernzerhof functional [6]

Related reading

Radial distribution function

Phonon density of states

In [7] the phonon density of states for the POL1, TIPS2, TIP4P, TIP3P, SPC, Rowlinson, MCY, and BF models for water are compared to experiment.

Experimental data

References

  1. K. Röttger, A. Endriss, J. Ihringer, S. Doyle and W. F. Kuhs "Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K", Acta Crystallographica Section B 50 pp. 644-648 (1994)
  2. 2.0 2.1 2.2 C. Vega, J. L. F. Abascal, M. M. Conde and J. L. Aragones "What ice can teach us about water interactions: a critical comparison of the performance of different water models", Faraday Discussions 141 pp. 251-276 (2009)
  3. 3.0 3.1 3.2 3.3 3.4 Carlos Vega, Maria Martin-Conde and Andrzej Patrykiejew "Absence of superheating for ice Ih with a free surface: a new method of determining the melting point of different water models", Molecular Physics 104 pp. 3583-3592 (2006)
  4. 4.0 4.1 Francesco Paesani and Gregory A. Voth "Quantum Effects Strongly Influence the Surface Premelting of Ice", Journal of Physical Chemistry C 112 pp. 324-327 (2008)
  5. José L. F. Abascal, Ramón García Fernández, Carlos Vega and Marcelo A. Carignano, "The melting temperature of the six site potential model of water", Journal of Chemical Physics, 125 166101 (2006)
  6. 6.0 6.1 Soohaeng Yoo, Xiao Cheng Zeng, and Sotiris S. Xantheas "On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals", Journal of Chemical Physics 130 221102 (2009)
  7. Shunle Dong and Jichen Li "The test of water potentials by simulating the vibrational dynamics of ice", Physica B 276-278 pp. 469-470 (2000)

Related reading

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.