Lennard-Jones model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 5: Line 5:
where:
where:


* <math> V(r) </math> : Potential energy of interaction betweeen two particles at a distance r;  
* <math> V(r) </math> : potential energy of interaction between two particles at a distance r;  


* <math> \sigma </math> : diameter (length);
* <math> \sigma </math> : diameter (length);
Line 13: Line 13:
Reduced units:  
Reduced units:  


* Density, <math> \rho^* \equiv \rho \sigma^3 </math>, where <math> \rho = N/V </math> (Number of particles <math> N </math> divided by the volume <math> V </math>.)
* Density, <math> \rho^* \equiv \rho \sigma^3 </math>, where <math> \rho = N/V </math> (number of particles <math> N </math> divided by the volume <math> V </math>.)


* Temperature; <math> T^* \equiv k_B T/\epsilon </math>, where <math> T </math>  is the absolute temperature and <math> k_B </math> is the [[Boltzmann constant]]
* Temperature; <math> T^* \equiv k_B T/\epsilon </math>, where <math> T </math>  is the absolute temperature and <math> k_B </math> is the [[Boltzmann constant]]

Revision as of 13:10, 27 February 2007

The Lennard-Jones potential is given by

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r) }  : potential energy of interaction between two particles at a distance r;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma }  : diameter (length);
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon }  : well depth (energy)

Reduced units:

  • Density, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^* \equiv \rho \sigma^3 } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = N/V } (number of particles Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } divided by the volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } .)
  • Temperature; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^* \equiv k_B T/\epsilon } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the absolute temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B } is the Boltzmann constant

References

  1. J. E. Lennard-Jones "Cohesion", Proc. Phys. Soc. Lond. 43 pp. 461- (1931)