Diffusion: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(→‎Einstein relation: auwful mistake (I guess) corrected (I hope))
m (Added a recent publication)
Line 38: Line 38:


==References==
==References==
#[http://books.google.es/books?id=XmyO2oRUg0cC&dq=understanding+molecular+simulations&psp=1 Daan Frenkel and Berend Smit "Understanding Molecular Simulation: From Algorithms to Applications". Academic Press 2002]
<references/>
#[http://dx.doi.org/10.1063/1.1786579 Karsten Meier, Arno Laesecke, and Stephan Kabelac "Transport coefficients of the Lennard-Jones model fluid. II Self-diffusion" J. Chem. Phys. '''121''' pp. 9526-9535 (2004)]
;Related reading
#[http://dx.doi.org/10.1080/00268970701348758 G. L. Aranovich and M. D. Donohue "Limitations and generalizations of the classical phenomenological model for diffusion in fluids", Molecular Physics '''105''' 1085-1093 (2007)]
*[http://books.google.es/books?id=XmyO2oRUg0cC&dq=understanding+molecular+simulations&psp=1 Daan Frenkel and Berend Smit "Understanding Molecular Simulation: From Algorithms to Applications". Academic Press 2002]
*[http://dx.doi.org/10.1063/1.1786579 Karsten Meier, Arno Laesecke, and Stephan Kabelac "Transport coefficients of the Lennard-Jones model fluid. II Self-diffusion" J. Chem. Phys. '''121''' pp. 9526-9535 (2004)]
*[http://dx.doi.org/10.1080/00268970701348758 G. L. Aranovich and M. D. Donohue "Limitations and generalizations of the classical phenomenological model for diffusion in fluids", Molecular Physics '''105''' 1085-1093 (2007)]
*[http://dx.doi.org/10.1080/00268976.2013.837534 P.-A. Artola and B. Rousseau "Thermal diffusion in simple liquid mixtures: what have we learnt from molecular dynamics simulations?", Molecular Physics '''111''' pp. 3394-3403 (2013)]
 
[[Category: Non-equilibrium thermodynamics]]
[[Category: Non-equilibrium thermodynamics]]

Revision as of 14:37, 21 February 2014

Diffusion is the process behind Brownian motion. It was described by Albert Einstein in one of his annus mirabilis papers of 1905. What follows applies to homogeneous systems, see diffusion at interfaces for a non-homogeneous case.

The diffusion equation that describes this process is

where is the (self-)diffusion coefficient. For initial conditions for a Dirac delta function at the origin, and boundary conditions that force the vanishing of and its gradient at large distances, the solution factorizes as , with a spreading Gaussian for each of the Cartesian components:

Einstein relation

It follows from the previous equation that, for each of the Cartesian components, e.g. :

,

for every particle . Therefore, an average over all particles can be employed in order to improve statistics. The same applies to time averaging: in equilibrium the average from to must equal the average from to , so several time segments from the same simulation may be averaged for a given interval [2]. Adding all components, the following also applies:

Green-Kubo relation

Main article: Green-Kubo relations

where is the center of mass velocity of molecule . Note that this connect the diffusion coefficient with the velocity autocorrelation.

See also


References

Related reading