Ideal gas Helmholtz energy function: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Carl McBride (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
From equations | From equations | ||
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math> | :<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math> | ||
and | for the [[ Ideal gas partition function | canonical ensemble partition function for an ideal gas]], and | ||
:<math>\left.A\right.=-k_B T \ln Q_{NVT}</math> | :<math>\left.A\right.=-k_B T \ln Q_{NVT}</math> | ||
one has | for the [[Helmholtz energy function]], one has | ||
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math> | :<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math> | ||
::<math>=-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)</math> | ::<math>=-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)</math> |
Revision as of 16:44, 8 June 2007
From equations
for the canonical ensemble partition function for an ideal gas, and
for the Helmholtz energy function, one has
using Stirling's approximation
one arrives at