1-dimensional hard rods: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 37: Line 37:
Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get:
Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get:


<math>
:<math>
\frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0  
\frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0  
\int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots  
\int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots  
Line 45: Line 45:


Therefore:
Therefore:
<math>
:<math>
\frac{ Z \left( N,L \right)}{N!} =  \frac{ (L-N\sigma )^{N} }{N!}.
\frac{ Z \left( N,L \right)}{N!} =  \frac{ (L-N\sigma )^{N} }{N!}.
</math>
</math>

Revision as of 11:53, 27 February 2007

Hard Rods, 1-dimensional system with hard sphere interactions.

The statistical mechanics of this system can be solved exactly (see Ref. 1).

Canonical Ensemble: Configuration Integral

This part could require further improvements

Consider a system of length Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.L\right.} defined in the range .

Our aim is to compute the partition function of a system of hard rods of length Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\sigma \right.} .

Model:

  • External Potential; the whole length of the rod must be inside the range:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{0}(x_{i})=\left\{{\begin{array}{lll}0&;&\sigma /2<x<L-\sigma /2\\\infty &;&elsewhere.\end{array}}\right.}
  • Pair Potential:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V(x_{i},x_{j})=\left\{{\begin{array}{lll}0&;&|x_{i}-x_{j}|>\sigma \\\infty &;&|x_{i}-x_{j}|<\sigma \end{array}}\right.}

where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.x_{k}\right.} is the position of the center of the k-th rod.

Consider that the particles are ordered according to their label: ;

taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of particles as:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {Z\left(N,L\right)}{N!}}=\int _{\sigma /2}^{L+\sigma /2-N\sigma }dx_{0}\int _{x_{0}+\sigma }^{L+\sigma /2-N\sigma +\sigma }dx_{1}\cdots \int _{x_{i-1}+\sigma }^{L+\sigma /2-N\sigma +i\sigma }dx_{i}\cdots \int _{x_{N-2}+\sigma }^{L+\sigma /2-N\sigma +(N-1)\sigma }dx_{N-1}.}

Variable change: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. }  ; we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0 \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots \int_{\omega_{i-1}}^{L-N\sigma} d \omega_i \cdots \int_{\omega_{N-2}}^{L-N\sigma} d \omega_{N-1}. }

Therefore:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(N,L) = \frac{ (L-N \sigma )^N}{\Lambda^N N!}. }

Thermodynamics

Helmholz energy function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }

In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = N/L } remaining finite(:

References

  1. Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
  2. L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
  3. L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)