1-dimensional hard rods: Difference between revisions
| Line 37: | Line 37: | ||
Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get: | Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get: | ||
<math> | :<math> | ||
\frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0 | \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0 | ||
\int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots | \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots | ||
| Line 45: | Line 45: | ||
Therefore: | Therefore: | ||
<math> | :<math> | ||
\frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. | \frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. | ||
</math> | </math> | ||
Revision as of 11:53, 27 February 2007
Hard Rods, 1-dimensional system with hard sphere interactions.
The statistical mechanics of this system can be solved exactly (see Ref. 1).
Canonical Ensemble: Configuration Integral
This part could require further improvements
Consider a system of length Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.L\right.} defined in the range .
Our aim is to compute the partition function of a system of hard rods of length Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\sigma \right.} .
Model:
- External Potential; the whole length of the rod must be inside the range:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{0}(x_{i})=\left\{{\begin{array}{lll}0&;&\sigma /2<x<L-\sigma /2\\\infty &;&elsewhere.\end{array}}\right.}
- Pair Potential:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V(x_{i},x_{j})=\left\{{\begin{array}{lll}0&;&|x_{i}-x_{j}|>\sigma \\\infty &;&|x_{i}-x_{j}|<\sigma \end{array}}\right.}
where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.x_{k}\right.} is the position of the center of the k-th rod.
Consider that the particles are ordered according to their label: ;
- taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of particles as:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {Z\left(N,L\right)}{N!}}=\int _{\sigma /2}^{L+\sigma /2-N\sigma }dx_{0}\int _{x_{0}+\sigma }^{L+\sigma /2-N\sigma +\sigma }dx_{1}\cdots \int _{x_{i-1}+\sigma }^{L+\sigma /2-N\sigma +i\sigma }dx_{i}\cdots \int _{x_{N-2}+\sigma }^{L+\sigma /2-N\sigma +(N-1)\sigma }dx_{N-1}.}
Variable change: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. } ; we get:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0 \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots \int_{\omega_{i-1}}^{L-N\sigma} d \omega_i \cdots \int_{\omega_{N-2}}^{L-N\sigma} d \omega_{N-1}. }
Therefore:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(N,L) = \frac{ (L-N \sigma )^N}{\Lambda^N N!}. }
Thermodynamics
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }
In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = N/L } remaining finite(:
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)