Triangular well model: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Corrected spelling.) |
Carl McBride (talk | contribs) m (References now in Cite format) |
||
Line 1: | Line 1: | ||
The '''triangular well model''', proposed by T. Nagayimain one dimension <ref>[http://www.journalarchive.jst.go.jp/english//jnlabstract_en.php?cdjournal=ppmsj1919&cdvol=22&noissue=8-9&startpage=705 T. Nagayima "Statistical Mechanics of One-dimensional Substances I", Proceedings of the Physico-Mathematical Society of Japan '''22''' pp. 705-720 (1940)]</ref><ref>[http://www.journalarchive.jst.go.jp/english//jnlabstract_en.php?cdjournal=ppmsj1919&cdvol=22&noissue=12&startpage=1034 T. Nagayima "Statistical Mechanics of One-dimensional Substances. II", Proceedings of the Physico-Mathematical Society of Japan '''22''' pp. 1034-1047 (1940)]</ref>, is given by | |||
The '''triangular well model''' is given by | |||
:<math> | :<math> | ||
Line 12: | Line 11: | ||
where <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]], <math>r</math> is the distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\sigma</math> is the hard diameter, <math>\epsilon</math> is the well depth | where <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]], <math>r</math> is the distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\sigma</math> is the hard diameter, <math>\epsilon</math> is the well depth | ||
and λ > 1. | and λ > 1. | ||
==Equation of state== | ==Equation of state== | ||
:''Main article: [[Equations of state for the triangular well model]]'' | :''Main article: [[Equations of state for the triangular well model]]'' | ||
==Virial coefficients== | ==Virial coefficients== | ||
<math>B_2</math> | <math>B_2</math>, <math>B_3</math> <ref>[http://dx.doi.org/10.1063/1.1725746 M. J. Feinberg and Andrew G. De Rocco "Intermolecular Forces: The Triangle Well and Some Comparisons with the Square Well and Lennard-Jones", Journal of Chemical Physics '''41''' pp. 3439-3450 (1964)]</ref> | ||
<ref>[http://dx.doi.org/10.1063/1.1696837 R. H. Fowler, H. W. Graben, Andrew G. De Rocco and M. J. Feinberg "Some Additional Results for the Triangle-Well Potential Model", Journal of Chemical Physics '''43''' pp. 1083-1084 (1965)]</ref> | |||
and <math>B_4</math> <ref>[http://dx.doi.org/10.1063/1.1675133 W. C. Farrar and Andrew G. De Rocco "Perturbation Theory for a High-Temperature Triangle-Well Fluid", Journal of Chemical Physics '''54''' pp. 2024-2025 (1971)]</ref> | |||
<math>B_4</math> | |||
==Critical point== | ==Critical point== | ||
==Solid phase== | ==Solid phase== | ||
<ref>[http://dx.doi.org/10.1080/00268970110120300 Jhumpa Adhikari and David A. Kofke "Monte Carlo and cell model calculations for the solid-fluid phase behaviour of the triangle-well model", Molecular Physics '''100''' pp. 1543-1550 (2002)]</ref> | |||
==References== | ==References== | ||
<references/> | |||
;Related reading | |||
*[http://dx.doi.org/10.1139/p72-195 Damon N. Card and John Walkley "Perturbation Calculations for a Triangular Well Potential at Low Densities", Canadian Journal of Physics '''50''' pp. 1419–1426 (1972)] | |||
*[http://dx.doi.org/10.1139/p74-010 Damon N. Card and John Walkley "Monte Carlo and Perturbation Calculations for a Triangular Well Fluid", Canadian Journal of Physics '''52''' pp. 80-88 (1974)] | |||
*[http://dx.doi.org/10.1016/S0378-4371(00)00232-6 J. Largo and J. R. Solana "A simplified perturbation theory for equilibrium properties of triangular-well fluids", Physica A '''284''' pp. 68-78 (2000)] | |||
*[http://dx.doi.org/10.1080/00268970701725013 F. F. Betancourt-Cárdenas, L. A. Galicia-Luna and S. I. Sandler "Thermodynamic properties for the triangular-well fluid", Molecular Physics '''105''' pp. 2987-2998 (2007)] | |||
*[http://dx.doi.org/10.1080/00268970701832397 F. F. Betancourt-Cárdenas, L. A. Galicia-Luna, A. L. Benavides, J. A. Ramírez and E. Schöll-Paschinger "Thermodynamics of a long-range triangle-well fluid", Molecular Physics '''106''' pp. 113-126 (2008)] | |||
*[http://dx.doi.org/10.1063/1.3049399 Shiqi Zhou "Thermodynamics and phase behavior of a triangle-well model and density-dependent variety", Journal of Chemical Physics '''130''' 014502 (2009)] | |||
[[category: models]] | [[category: models]] |
Revision as of 12:27, 17 February 2011
The triangular well model, proposed by T. Nagayimain one dimension [1][2], is given by
where is the intermolecular pair potential, is the distance , is the hard diameter, is the well depth and λ > 1.
Equation of state
- Main article: Equations of state for the triangular well model
Virial coefficients
Critical point
Solid phase
References
- ↑ T. Nagayima "Statistical Mechanics of One-dimensional Substances I", Proceedings of the Physico-Mathematical Society of Japan 22 pp. 705-720 (1940)
- ↑ T. Nagayima "Statistical Mechanics of One-dimensional Substances. II", Proceedings of the Physico-Mathematical Society of Japan 22 pp. 1034-1047 (1940)
- ↑ M. J. Feinberg and Andrew G. De Rocco "Intermolecular Forces: The Triangle Well and Some Comparisons with the Square Well and Lennard-Jones", Journal of Chemical Physics 41 pp. 3439-3450 (1964)
- ↑ R. H. Fowler, H. W. Graben, Andrew G. De Rocco and M. J. Feinberg "Some Additional Results for the Triangle-Well Potential Model", Journal of Chemical Physics 43 pp. 1083-1084 (1965)
- ↑ W. C. Farrar and Andrew G. De Rocco "Perturbation Theory for a High-Temperature Triangle-Well Fluid", Journal of Chemical Physics 54 pp. 2024-2025 (1971)
- ↑ Jhumpa Adhikari and David A. Kofke "Monte Carlo and cell model calculations for the solid-fluid phase behaviour of the triangle-well model", Molecular Physics 100 pp. 1543-1550 (2002)
- Related reading
- Damon N. Card and John Walkley "Perturbation Calculations for a Triangular Well Potential at Low Densities", Canadian Journal of Physics 50 pp. 1419–1426 (1972)
- Damon N. Card and John Walkley "Monte Carlo and Perturbation Calculations for a Triangular Well Fluid", Canadian Journal of Physics 52 pp. 80-88 (1974)
- J. Largo and J. R. Solana "A simplified perturbation theory for equilibrium properties of triangular-well fluids", Physica A 284 pp. 68-78 (2000)
- F. F. Betancourt-Cárdenas, L. A. Galicia-Luna and S. I. Sandler "Thermodynamic properties for the triangular-well fluid", Molecular Physics 105 pp. 2987-2998 (2007)
- F. F. Betancourt-Cárdenas, L. A. Galicia-Luna, A. L. Benavides, J. A. Ramírez and E. Schöll-Paschinger "Thermodynamics of a long-range triangle-well fluid", Molecular Physics 106 pp. 113-126 (2008)
- Shiqi Zhou "Thermodynamics and phase behavior of a triangle-well model and density-dependent variety", Journal of Chemical Physics 130 014502 (2009)