1-dimensional hard rods: Difference between revisions
Carl McBride (talk | contribs) m (→References) |
|||
| Line 55: | Line 55: | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1103/PhysRev.50.955 Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review '''50''' pp. 955- (1936)] | #[http://dx.doi.org/10.1103/PhysRev.50.955 Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review '''50''' pp. 955- (1936)] | ||
#[http://dx.doi.org/10.1016/0031-8914(49)90059-2 L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, '''15''' pp. 951-961 (1949)] | |||
#[http://dx.doi.org/10.1016/0031-8914(50)90072-3 L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, '''16''' pp. 137-143 (1950)] | |||
Revision as of 16:37, 26 February 2007
Hard Rods, 1-dimensional system with hard sphere interactions.
The statistical mechanics of this system can be solved exactly (see Ref. 1).
Canonical Ensemble: Configuration Integral
This part could require further improvements
Consider a system of length defined in the range .
Our aim is to compute the partition function of a system of hard rods of length Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\sigma \right.} .
Model:
- External Potential; the whole length of the rod must be inside the range:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{0}(x_{i})=\left\{{\begin{array}{lll}0&;&\sigma /2<x<L-\sigma /2\\\infty &;&elsewhere.\end{array}}\right.}
- Pair Potential:
where is the position of the center of the k-th rod.
Consider that the particles are ordered according to their label: ;
taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of particles as:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {Z\left(N,L\right)}{N!}}=\int _{\sigma /2}^{L+\sigma /2-N\sigma }dx_{0}\int _{x_{0}+\sigma }^{L+\sigma /2-N\sigma +\sigma }dx_{1}\cdots \int _{x_{i-1}+\sigma }^{L+\sigma /2-N\sigma +i\sigma }dx_{i}\cdots \int _{x_{N-2}+\sigma }^{L+\sigma /2-N\sigma +(N-1)\sigma }dx_{N-1}.}
Variable change: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\omega _{k}=x_{k}-(k+{\frac {1}{2}})\sigma \right.} ; we get:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {Z\left(N,L\right)}{N!}}=\int _{0}^{L-N\sigma }d\omega _{0}\int _{\omega _{0}}^{L-N\sigma }d\omega _{1}\cdots \int _{\omega _{i-1}}^{L-N\sigma }d\omega _{i}\cdots \int _{\omega _{N-2}}^{L-N\sigma }d\omega _{N-1}.}
Therefore: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {Z\left(N,L\right)}{N!}}={\frac {(V-N)^{N}}{N!}}.}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q(N,L)={\frac {(V-N)^{N}}{\Lambda ^{N}N!}}.}
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)