Mie potential: Difference between revisions
Jump to navigation
Jump to search
m (Better defined r) |
m (→References: Added a new reference.) |
||
| Line 13: | Line 13: | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1002/andp.19033160802 Gustav Mie "Zur kinetischen Theorie der einatomigen Körper", Annalen der Physik '''11''' pp. 657-697 (1903)] (check this reference) | #[http://dx.doi.org/10.1002/andp.19033160802 Gustav Mie "Zur kinetischen Theorie der einatomigen Körper", Annalen der Physik '''11''' pp. 657-697 (1903)] (check this reference) | ||
#[http://dx.doi.org/10.1016/j.physleta.2008.10.047 Pedro Orea, Yuri Reyes-Mercado, Yurko Duda "Some universal trends of the Mie(n,m) fluid thermodynamics", Physics Letters A '''372''' pp. 7024-7027 (2008)] | |||
[[Category: Models]] | [[Category: Models]] | ||
Revision as of 21:48, 12 January 2009
The Mie potential was proposed by Gustav Mie in 1903. It is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r) = \left( \frac{n}{n-m}\right) \left( \frac{n}{m}\right)^{m/(n-m)} \epsilon \left[ \left(\frac{\sigma}{r} \right)^{n}- \left( \frac{\sigma}{r}\right)^m \right] }
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Phi _{12}(r)} is the intermolecular pair potential between two particles at a distance r;
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the diameter (length), i.e. the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)=0} ;
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon } : well depth (energy)
Note that when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=12} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=6} this becomes the Lennard-Jones model.
(14,7) model
- Afshin Eskandari Nasrabad "Monte Carlo simulations of thermodynamic and structural properties of Mie(14,7) fluids", Journal of Chemical Physics 128 154514 (2008)
- Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics 129 024507 (2008)