Master equation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Started adding the master equation)
m (Added terms)
Line 1: Line 1:
{{stub-general}}
{{stub-general}}
The '''master equation''' describes the exact behavior of the velocity distribution for any time (Ref. 1 Eq. 3-11)
The '''master equation''' describes the exact behavior of the [[velocity distribution]] for any time (Ref. 1 Eq. 3-11)


:<math>\partial_{t \rho_0} \left( \{ {\mathbf \upsilon} \},t \right) =  {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) + \int_0^t G_{00}(t-t') \rho_0 \left( \{ {\upsilon} \},t' \right)  {\mathrm d}t'</math>
:<math>\partial_{t \rho_0} \left( \{ {\mathbf \upsilon} \},t \right) =  {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) + \int_0^t G_{00}(t-t') \rho_0 \left( \{ {\upsilon} \},t' \right)  {\mathrm d}t'</math>


where
where the time dependent functional of the initial conditions is given by (Ref. 1 Eq. 3-9)


:<math>{\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right)</math>
:<math>{\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) = \frac{-1}{2\pi} \oint_c \exp (-izt) \sum_{ \{k'' \} \neq 0} {\mathcal D}^+_{0 \{k'' \}} (z) \rho_{\{k'' \}} \left( \{ {\mathbf \upsilon} \},0 \right) </math>
 
and the diagonal fragment is given by (Ref. 1 Eq. 3-10)
 
:<math>G_{00}(\tau)  = \frac{1}{2\pi i} \oint_c \exp (-iz \tau) \psi^+_{00} (z)~ {\mathrm d}z </math>
==References==
==References==
#[http://dx.doi.org/10.1016/0031-8914(61)90008-8 I. Prigonine and P. Résibois "On the kinetics of the approach to equilibrium", Physica '''27''' pp. 629-646  (1961)]
#[http://dx.doi.org/10.1016/0031-8914(61)90008-8 I. Prigonine and P. Résibois "On the kinetics of the approach to equilibrium", Physica '''27''' pp. 629-646  (1961)]
[[category: Non-equilibrium thermodynamics]]
[[category: Non-equilibrium thermodynamics]]

Revision as of 17:52, 26 June 2008

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The master equation describes the exact behavior of the velocity distribution for any time (Ref. 1 Eq. 3-11)

where the time dependent functional of the initial conditions is given by (Ref. 1 Eq. 3-9)

and the diagonal fragment is given by (Ref. 1 Eq. 3-10)

References

  1. I. Prigonine and P. Résibois "On the kinetics of the approach to equilibrium", Physica 27 pp. 629-646 (1961)