Wigner D-matrix: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) mNo edit summary |
Carl McBride (talk | contribs) m (→References: Added a reference) |
||
Line 23: | Line 23: | ||
==References== | ==References== | ||
#E. P. Wigner, ''Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren'', Vieweg Verlag, Braunschweig (1931). | #E. P. Wigner, ''Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren'', Vieweg Verlag, Braunschweig (1931). | ||
#[http://dx.doi.org/10.1063/1.2194548 Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics '''124''' 144115 (2006)] | |||
[[Category: Mathematics]] | [[Category: Mathematics]] |
Revision as of 15:19, 17 June 2008
The Wigner D-matrix (also known as the Wigner rotation matrix) is a square matrix, of dimension , given by
where and are Euler angles, and where , known as Wigner's reduced d-matrix, is given by
This represents a rotation of about the (inital frame) axis.
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional to spherical harmonics (normalized to unity)
External links
References
- E. P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig (1931).
- Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics 124 144115 (2006)