Lennard-Jones model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 15: Line 15:
* Density, <math> \rho^* \equiv \rho \sigma^3 </math>, where <math> \rho = N/V </math> (Number of particles <math> N </math> divided by the volume <math> V </math>.)
* Density, <math> \rho^* \equiv \rho \sigma^3 </math>, where <math> \rho = N/V </math> (Number of particles <math> N </math> divided by the volume <math> V </math>.)


* Temperature; <math> T^* \equiv k_B T/\epsilon </math>, where <math> T </math>  is the absolute temperature and <math> k_B </math> is the [[Boltzmann]] constant
* Temperature; <math> T^* \equiv k_B T/\epsilon </math>, where <math> T </math>  is the absolute temperature and <math> k_B </math> is the [[Ludwig Eduard Boltzmann | Boltzmann]] constant


==References==  
==References==  

Revision as of 18:24, 16 February 2007

Lennard-Jones Potential:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r) = 4 \epsilon \left[ \left(\frac{\sigma}{r} \right)^{12}- \left( \frac{\sigma}{r}\right)^6 \right] }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r) }  : Potential energy of interaction betweeen two particles at a distance r;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma }  : Diameter (length);
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon }  : well depth (energy)

Reduced units:

  • Density, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^* \equiv \rho \sigma^3 } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = N/V } (Number of particles Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } divided by the volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } .)
  • Temperature; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^* \equiv k_B T/\epsilon } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the absolute temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B } is the Boltzmann constant

References

J. E. Lennard-Jones "Cohesion", Proc. Phys. Soc. Lond. volume 43 pages 461 (1931)