1-dimensional Ising model: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 16: | Line 16: | ||
and <math> K = J/k_B T </math> | and <math> K = J/k_B T </math> | ||
<math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N}\sum_{S_{N+1}} e^{K S_N S_{N+1} } | |||
</math> | |||
Performing the sum of the possible <math> S_{N+1} </math> values we get: | |||
<math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K S_n ) \right] | |||
</math> | |||
<math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K ) \right] | |||
</math> | |||
Therefore: | |||
<math> Q_{N+1} = \left( 2 \cosh K \right) Q_{N+1} </math> | |||
<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | |||
The Helmholtz free energy in the thermodynamic limit will be | |||
<math> A = - N k_B T \log \left( 2 \cosh K \right) </math> |
Revision as of 12:38, 23 February 2007
Model: Consider a system with spins in a row.
The energy of the system will be given by
,
where each variable can be either -1 or +1.
The partition function of the system will be:
,
where represents the possible configuration of the N spins of the system,
and
Performing the sum of the possible values we get:
Therefore:
The Helmholtz free energy in the thermodynamic limit will be