Hyper-netted chain: Difference between revisions
Carl McBride (talk | contribs) mNo edit summary |
mNo edit summary |
||
Line 5: | Line 5: | ||
:<math>\ln y (r) = h(r) -c(r) \equiv \gamma (r)</math> | :<math>\ln y (r) = h(r) -c(r) \equiv \gamma (r)</math> | ||
The HNC closure can be written as (5.7) | The HNC closure can be written as (5.7) | ||
:<math>f [ \gamma (r) ] = e^{[-\beta \Phi (r) + \gamma (r)]} - \gamma (r) -1</math> | :<math>f \left[ \gamma (r) \right] = e^{[-\beta \Phi (r) + \gamma (r)]} - \gamma (r) -1</math> | ||
or | or | ||
:<math>c(r)= h(r) - \beta \Phi(r) - \ln {\rm g}(r)</math> | :<math>c(r)= h(r) - \beta \Phi(r) - \ln {\rm g}(r)</math> | ||
or (Eq. 12 \cite{MP_1983_49_1495}) | or (Eq. 12 \cite{MP_1983_49_1495}) | ||
:<math> c(r)= g(r) - \omega(r) </math> | :<math> c\left( r \right)= g(r) - \omega(r) </math> | ||
The HNC approximation is well suited for long-range potentials, and in particular, Coulombic systems. For details of the numerical solution of the HNC for ionic systems see \cite{MP_1988_65_0599}. | The HNC approximation is well suited for long-range potentials, and in particular, Coulombic systems. For details of the numerical solution of the HNC for ionic systems see \cite{MP_1988_65_0599}. | ||
==References== | ==References== |
Revision as of 17:23, 16 February 2007
The HNC equation has a clear physical basis in the Kirkwood superposition approximation \cite{MP_1983_49_1495}.The hyper-netted chain approximation is obtained by omitting the elementary clusters, , in the exact convolution equation for . The hyper-netted chain (HNC) approximation was developed almost simultaneously by various groups, namely: van Leeuwen, Groeneveld and de Boer, 1959 \cite{P_1959_25_0792}, Morita and Hiroike, 1960 \cite{PTP_1958_020_0920,PTP_1959_021_0361,PTP_1960_023_0829,PTP_1960_023_1003,PTP_1960_024_0317,PTP_1961_025_0537}, Rushbrooke, 1960 \cite{P_1960_26_0259}, Verlet, 1960 \cite{NC_1960_18_0077_nolotengo}, and Meeron, 1960 \cite{JMP_1960_01_00192}. The HNC omits the Bridge function, i.e. , thus the cavity correlation function becomes
The HNC closure can be written as (5.7)
or
or (Eq. 12 \cite{MP_1983_49_1495})
The HNC approximation is well suited for long-range potentials, and in particular, Coulombic systems. For details of the numerical solution of the HNC for ionic systems see \cite{MP_1988_65_0599}.