Flexible molecules: Difference between revisions
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
Bond sequence: 1-2-3-4 | Bond sequence: 1-2-3-4 | ||
Dihedral angle (<math> \phi </math>) definition: | Dihedral angle (<math> \phi </math>) definition: | ||
Line 37: | Line 36: | ||
* <math> \vec{b} \equiv \frac{ \vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} } | * <math> \vec{b} \equiv \frac{ \vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} } | ||
{ |\vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} | } </math>; | { |\vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} | } </math>; normalized component of <math> \vec{r}_{21} </math> ortogonal to <math> \vec{a} </math> | ||
* <math> \vec{e}_{34} \equiv \frac{ \vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} } | * <math> \vec{e}_{34} \equiv \frac{ \vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} } | ||
{ |\vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} | } </math> | { |\vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} | } </math>; normalized component of <math> \vec{r}_{34} </math> ortogonal to <math> \vec{a} </math> | ||
*<math> \vec{c} = \vec{a} \times \vec{b} </math> | *<math> \vec{c} = \vec{a} \times \vec{b} </math> | ||
Line 50: | Line 48: | ||
usually modelled as: | usually modelled as: | ||
*<math> | |||
V_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i | V_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i | ||
</math> | </math> | ||
Line 56: | Line 54: | ||
or | or | ||
* <math> | |||
V_{tors} \left(\phi\right) = \sum_{i=0}^n b_i \cos \left( i \phi \right) | V_{tors} \left(\phi\right) = \sum_{i=0}^n b_i \cos \left( i \phi \right) | ||
</math> | </math> |
Revision as of 11:51, 22 February 2007
Modelling of internal degrees of freedom, usual techniques:
Bond distances
- Atoms linked by a chemical bond (stretching):
Bond Angles
Bond sequence: 1-2-3:
Bond Angle:
Two typical forms are used to model the bending potential:
Dihedral angles. Internal Rotation
Bond sequence: 1-2-3-4 Dihedral angle () definition:
Consider the following vectors:
- ; Unit vector in the direction of the 2-3 bond
- ; normalized component of ortogonal to
- ; normalized component of ortogonal to
For molecules with internal rotation degrees of freedom (e.g. n-alkanes), a torsional potential is usually modelled as:
or