Ornstein-Zernike relation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Reverted edits by 70.158.67.162 (Talk); changed back to last version by Carl McBride)
mNo edit summary
Line 23: Line 23:
If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)
If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)


:<math>\gamma (r) \equiv  h(r) - c(r) = \rho \int  h(r')~c(|r - r'|) dr'</math>
:<math>\gamma ({\mathbf r}) \equiv  h({\mathbf r}) - c({\mathbf r}) = \rho \int  h({\mathbf r'})~c(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}</math>


In words, this equation (Hansen and McDonald, section 5.2 p. 107)
In words, this equation (Hansen and McDonald, section 5.2 p. 107)
Line 37: Line 37:
(here truncated at the fourth iteration):
(here truncated at the fourth iteration):


:<math>h(r) = c(r)  + \rho \int c(|r - r'|)  c(r')  dr'
+ \rho^2  \int \int  c(|r - r'|)  c(|r' - r''|)  c(r'')  dr''dr' 
+ \rho^3 \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(r''')  dr'''dr''dr'
+ \rho^4 \int \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(|r''' - r''''|) h(r'''')  dr'''' dr'''dr''dr'</math>


''etc.''
:<math>h({\mathbf r}) = c({\mathbf r})  + \rho \int c(|{\mathbf r} - {\mathbf r'}|)  c({\mathbf r'})  {\rm d}{\mathbf r'}</math>
 
:::::<math>+ \rho^2  \iint  c(|{\mathbf r} - {\mathbf r'}|)  c(|{\mathbf r'} - {\mathbf r''}|)  c({\mathbf r''})  {\rm d}{\mathbf r''}{\rm d}{\mathbf r'}</math>
 
:::::<math>+ \rho^3 \iiint  c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c({\mathbf r'''})  {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}</math>
 
:::::<math>+ \rho^4 \iiiint  c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c(|{\mathbf r'''} - {\mathbf r''''}|) h({\mathbf r''''})  {\rm d}{\mathbf r''''} {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}</math>
 
:::::''etc.''
 
Diagrammatically this expression can be written as  (Ref. 2):
Diagrammatically this expression can be written as  (Ref. 2):


Line 54: Line 59:
of the grand canonical distribution function (HM check this).
of the grand canonical distribution function (HM check this).
==OZ equation in Fourier space==
==OZ equation in Fourier space==
The OZ equation may be written in Fourier space as (Eq. 5 in Ref. 3):
The Ornstein-Zernike equation may be written in [[Fourier space]] as (Eq. 5 in Ref. 3):


:<math>\hat{\gamma} = (I - \rho \hat{c})^{-1}  \hat{c} \rho  \hat{c}</math>
:<math>\hat{\gamma} = ({\mathbf I} - \rho {\mathbf \hat{c}})^{-1}  {\mathbf \hat{c}} \rho  {\mathbf \hat{c}}</math>


The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly
The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly
Line 68: Line 73:
Note:
Note:


:<math>\hat{h}(0) = \int h(r) dr</math>
:<math>\hat{h}(0) = \int h(r) {\rm d}{\mathbf r}</math>




:<math>\hat{c}(0) = \int c(r) dr</math>
:<math>\hat{c}(0) = \int c(r) {\rm d}{\mathbf r}</math>


==References==
==References==

Revision as of 15:41, 10 July 2007

Notation:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r)} is the pair distribution function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)} is the pair potential acting between pairs.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2)} is the total correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(1,2)} is the direct correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)} is the indirect (or series or chain) correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(r_{12})} is the cavity correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r)} is the bridge function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega(r)} is the thermal potential.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)} is the Mayer f-function.


The Ornstein-Zernike relation (OZ) integral equation is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h=h\left[c\right]}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h[c]} denotes a functional of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} . This relation is exact. This is complemented by the closure relation

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} . Because of this must be determined self-consistently. This need for self-consistency is characteristic of all many-body problems. (Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the OZ has the form (5.2.7)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3}

If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma ({\mathbf r}) \equiv h({\mathbf r}) - c({\mathbf r}) = \rho \int h({\mathbf r'})~c(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}}

In words, this equation (Hansen and McDonald, section 5.2 p. 107)

``...describes the fact that the total correlation between particles 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2)}
, 
is due in part to the direct correlation between 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(1,2)}
, but also to the indirect correlation,  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)}
, propagated via increasingly large numbers of intermediate particles."

Notice that this equation is basically a convolution, i.e.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h \equiv c + \rho h\otimes c }

(Note: the convolution operation written here as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \otimes} is more frequently written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) This can be seen by expanding the integral in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r)} (here truncated at the fourth iteration):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h({\mathbf r}) = c({\mathbf r}) + \rho \int c(|{\mathbf r} - {\mathbf r'}|) c({\mathbf r'}) {\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^2 \iint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c({\mathbf r''}) {\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^3 \iiint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c({\mathbf r'''}) {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^4 \iiiint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c(|{\mathbf r'''} - {\mathbf r''''}|) h({\mathbf r''''}) {\rm d}{\mathbf r''''} {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
etc.

Diagrammatically this expression can be written as (Ref. 2):

where the bold lines connecting root points denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} functions, the blobs denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} functions. An arrow pointing from left to right indicates an uphill path from one root point to another. An `uphill path' is a sequence of Mayer bonds passing through increasing particle labels. The OZ relation can be derived by performing a functional differentiation of the grand canonical distribution function (HM check this).

OZ equation in Fourier space

The Ornstein-Zernike equation may be written in Fourier space as (Eq. 5 in Ref. 3):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} = ({\mathbf I} - \rho {\mathbf \hat{c}})^{-1} {\mathbf \hat{c}} \rho {\mathbf \hat{c}}}

The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly to:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} (k) = \frac{4 \pi}{k} \int_0^\infty r~\sin (kr) \gamma(r) dr}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r) = \frac{1}{2 \pi^2 r} \int_0^\infty k~\sin (kr) \hat{\gamma}(r) dk}

Note:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{h}(0) = \int h(r) {\rm d}{\mathbf r}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{c}(0) = \int c(r) {\rm d}{\mathbf r}}

References

  1. L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. 17 pp. 793- (1914)
  2. James A. Given "Liquid-state methods for random media: Random sequential adsorption", Physical Review A 45 pp. 816 - 824 (1992)
  3. Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics 103 pp. 2625-2633 (1995)
  4. Hansen and MacDonald "Theory of Simple Liquids"