Ornstein-Zernike relation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
m (Reverted edits by 70.158.67.162 (Talk); changed back to last version by Carl McBride)
Line 20: Line 20:
This need for self-consistency is characteristic of all many-body problems.
This need for self-consistency is characteristic of all many-body problems.
(Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the OZ has the form (5.2.7)
(Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the OZ has the form (5.2.7)
:<math>h(1,2) = c(1,2)   \int \rho^{(1)}(3) c(1,3)h(3,2) d3</math>
:<math>h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3</math>
If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)
If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)


Line 31: Line 31:


Notice that this equation is basically a convolution, ''i.e.''
Notice that this equation is basically a convolution, ''i.e.''
:<math>h  \equiv c   \rho h\otimes c </math>
:<math>h  \equiv c + \rho h\otimes c </math>


(Note: the convolution operation written here as <math>\otimes</math> is more frequently written as <math>*</math>)
(Note: the convolution operation written here as <math>\otimes</math> is more frequently written as <math>*</math>)
Line 37: Line 37:
(here truncated at the fourth iteration):
(here truncated at the fourth iteration):


:<math>h(r) = c(r)   \rho \int c(|r - r'|)  c(r')  dr'  
:<math>h(r) = c(r) + \rho \int c(|r - r'|)  c(r')  dr'  
  \rho^2  \int \int  c(|r - r'|)  c(|r' - r''|)  c(r'')  dr''dr'   
+ \rho^2  \int \int  c(|r - r'|)  c(|r' - r''|)  c(r'')  dr''dr'   
  \rho^3 \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(r''')  dr'''dr''dr'
+ \rho^3 \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(r''')  dr'''dr''dr'
  \rho^4 \int \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(|r''' - r''''|) h(r'''')  dr'''' dr'''dr''dr'</math>
+ \rho^4 \int \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(|r''' - r''''|) h(r'''')  dr'''' dr'''dr''dr'</math>


''etc.''
''etc.''

Revision as of 10:19, 4 July 2007

Notation:

  • is the pair distribution function.
  • is the pair potential acting between pairs.
  • is the total correlation function.
  • is the direct correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)} is the indirect (or series or chain) correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(r_{12})} is the cavity correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r)} is the bridge function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega(r)} is the thermal potential.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)} is the Mayer f-function.


The Ornstein-Zernike relation (OZ) integral equation is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h=h\left[c\right]}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h[c]} denotes a functional of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} . This relation is exact. This is complemented by the closure relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=c\left[h\right]}

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} . Because of this Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} must be determined self-consistently. This need for self-consistency is characteristic of all many-body problems. (Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the OZ has the form (5.2.7)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3}

If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r) \equiv h(r) - c(r) = \rho \int h(r')~c(|r - r'|) dr'}

In words, this equation (Hansen and McDonald, section 5.2 p. 107)

``...describes the fact that the total correlation between particles 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2)}
, 
is due in part to the direct correlation between 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(1,2)}
, but also to the indirect correlation,  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)}
, propagated via increasingly large numbers of intermediate particles."

Notice that this equation is basically a convolution, i.e.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h \equiv c + \rho h\otimes c }

(Note: the convolution operation written here as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \otimes} is more frequently written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) This can be seen by expanding the integral in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r)} (here truncated at the fourth iteration):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r) = c(r) + \rho \int c(|r - r'|) c(r') dr' + \rho^2 \int \int c(|r - r'|) c(|r' - r''|) c(r'') dr''dr' + \rho^3 \int\int\int c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(r''') dr'''dr''dr' + \rho^4 \int \int\int\int c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(|r''' - r''''|) h(r'''') dr'''' dr'''dr''dr'}

etc. Diagrammatically this expression can be written as (Ref. 2):

where the bold lines connecting root points denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} functions, the blobs denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} functions. An arrow pointing from left to right indicates an uphill path from one root point to another. An `uphill path' is a sequence of Mayer bonds passing through increasing particle labels. The OZ relation can be derived by performing a functional differentiation of the grand canonical distribution function (HM check this).

OZ equation in Fourier space

The OZ equation may be written in Fourier space as (Eq. 5 in Ref. 3):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} = (I - \rho \hat{c})^{-1} \hat{c} \rho \hat{c}}

The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly to:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} (k) = \frac{4 \pi}{k} \int_0^\infty r~\sin (kr) \gamma(r) dr}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r) = \frac{1}{2 \pi^2 r} \int_0^\infty k~\sin (kr) \hat{\gamma}(r) dk}

Note:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{h}(0) = \int h(r) dr}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{c}(0) = \int c(r) dr}

References

  1. L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. 17 pp. 793- (1914)
  2. James A. Given "Liquid-state methods for random media: Random sequential adsorption", Physical Review A 45 pp. 816 - 824 (1992)
  3. Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics 103 pp. 2625-2633 (1995)
  4. Hansen and MacDonald "Theory of Simple Liquids"