Pair distribution function: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Carl McBride (talk | contribs) No edit summary | mNo edit summary | ||
| Line 2: | Line 2: | ||
| ([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as | ([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as | ||
| :<math>{\rm g}_N^{(2)}( | :<math>{\rm g}_N^{(2)}({\mathbf r}_1,{\mathbf r}_2)= V^2 \frac{\int ... \int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_3...{\rm d}{\mathbf r}_N}{\int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_1...{\rm d}{\mathbf r}_N}</math> | ||
| {\int ... \int e^{-\beta \Phi( | |||
| {\int e^{-\beta \Phi( | |||
| where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]]. | where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]]. | ||
| Line 12: | Line 10: | ||
| :<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) -  \frac{\Phi(r_{13})}{kT} - E(r_{13})  \right)(g(r_{23}) -1)  ~{\rm d}r_3</math> | :<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) -  \frac{\Phi(r_{13})}{kT} - E(r_{13})  \right)(g(r_{23}) -1)  ~{\rm d}r_3</math> | ||
| where <math>r_{12} = |{\mathbf r}_2 - {\mathbf r}_1|</math>. | |||
| ==See also== | ==See also== | ||
| *[[Radial distribution function]] | *[[Radial distribution function]] | ||
Revision as of 15:15, 10 July 2007
For a fluid of particles, enclosed in a volume at a given temperature (canonical ensemble) interacting via the `central' intermolecular pair potential , the two particle distribution function is defined as
where , where is the Boltzmann constant.
Exact convolution equation for
See Eq. 5.10 of Ref. 1:
where .