Percus Yevick: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Carl McBride (talk | contribs) mNo edit summary |
||
Line 4: | Line 4: | ||
:<math>\left.D(r)\right. = y(r) + c(r) -g(r)</math> | :<math>\left.D(r)\right. = y(r) + c(r) -g(r)</math> | ||
one has the exact integral equation | one has the exact [[integral equations | integral equation]] | ||
:<math>y(r_{12}) - D(r_{12}) = 1 + n \int (f(r_{13})y(r_{13})+D(r_{13})) h(r_{23})~dr_3</math> | :<math>y(r_{12}) - D(r_{12}) = 1 + n \int (f(r_{13})y(r_{13})+D(r_{13})) h(r_{23})~dr_3</math> | ||
Line 13: | Line 13: | ||
:<math>\left.h-c\right.=y-1</math> | :<math>\left.h-c\right.=y-1</math> | ||
The | The Percus-Yevick [[Closure relations | closure relation]] can be written as (Ref. 3 Eq. 61) | ||
:<math>\left.f [ \gamma (r) ]\right. = [e^{-\beta \Phi} -1][\gamma (r) +1]</math> | :<math>\left.f [ \gamma (r) ]\right. = [e^{-\beta \Phi} -1][\gamma (r) +1]</math> |
Revision as of 18:09, 26 June 2007
If one defines a class of diagrams by the linear combination (Eq. 5.18 Ref.1) (See G. Stell in Ref. 2)
one has the exact integral equation
The Percus-Yevick integral equation sets D(r)=0. Percus-Yevick (PY) proposed in 1958 Ref. 3
The Percus-Yevick closure relation can be written as (Ref. 3 Eq. 61)
or
or (Eq. 10 in Ref. 4)
or (Eq. 2 of Ref. 5)
where is the intermolecular pair potential.
In terms of the bridge function
Note: the restriction arising from the logarithmic term Ref. 6.
A critical look at the PY was undertaken by Zhou and Stell in Ref. 7.
References
- J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)
- G. Stell "PERCUS-YEVICK EQUATION FOR RADIAL DISTRIBUTION FUNCTION OF A FLUID", Physica 29 pp. 517- (1963)
- Jerome K. Percus and George J. Yevick "Analysis of Classical Statistical Mechanics by Means of Collective Coordinates", Physical Review 110 pp. 1 - 13 (1958)
- G. A. Martynov and G. N. Sarkisov "Exact equations and the theory of liquids. V", Molecular Physics 49 pp. 1495-1504 (1983)
- Forrest J. Rogers and David A. Young "New, thermodynamically consistent, integral equation for simple fluids", Physical Review A 30 pp. 999 - 1007 (1984)
- Niharendu Choudhury and Swapan K. Ghosh "Integral equation theory of Lennard-Jones fluids: A modified Verlet bridge function approach", Journal of Chemical Physics, 116 pp. 8517-8522 (2002)
- Yaoqi Zhou and George Stell "The hard-sphere fluid: New exact results with applications", Journal of Statistical Physics 52 1389-1412 (1988)