Replica method: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 1: Line 1:
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
<math>\{ q^{N_0} \}</math> in the Canonical (<math>NVT</math>) ensemble is given by:
<math>\{ {\mathbf q}^{N_0} \}</math> in the [[Canonical ensemble]] is given by:


:<math>- \beta A_1 (q^{N_0}) = \log Z_1  (q^{N_0})
:<math>- \beta A_1 ({\mathbf q}^{N_0}) = \log Z_1  ({\mathbf q}^{N_0})
= \log \left( \frac{1}{N_1!}  
= \log \left( \frac{1}{N_1!}  
\int \exp [- \beta (H_{11}(r^{N_1}) + H_{10}(r^{N_1}, q^{N_0}) )]~d \{ r \}^{N_1} \right)</math>
\int \exp [- \beta (H_{11}({\mathbf r}^{N_1}) + H_{10}({\mathbf r}^{N_1}, {\mathbf q}^{N_0}) )]~d \{ {\mathbf r} \}^{N_1} \right)</math>


where <math>Z_1  (q^{N_0})</math> is the fluid [[partition function]], and <math>H_{11}</math>, <math>H_{10}</math> and <math>H_{00}</math>
where <math>Z_1  ({\mathbf q}^{N_0})</math> is the fluid [[partition function]], and <math>H_{11}</math>, <math>H_{10}</math> and <math>H_{00}</math>
are the pieces of the Hamiltonian corresponding to the fluid-fluid, fluid-matrix and matrix-matrix interactions. Assuming that the matrix is a configuration of a given fluid, with interaction hamiltonian <math>H_{00}</math>, we can average over matrix configurations to obtain
are the pieces of the [[Hamiltonian]] corresponding to the fluid-fluid, fluid-matrix and matrix-matrix interactions. Assuming that the matrix is a configuration of a given fluid, with interaction hamiltonian <math>H_{00}</math>, we can average over matrix configurations to obtain


:<math>- \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~  \log Z_1  (q^{N_0}) ~d \{  q \}^{N_0}</math>
:<math>- \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~  \log Z_1  (q^{N_0}) ~d \{  q \}^{N_0}</math>

Revision as of 16:21, 10 July 2007

The Helmholtz energy function of fluid in a matrix of configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ {\mathbf q}^{N_0} \}} in the Canonical ensemble is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta A_1 ({\mathbf q}^{N_0}) = \log Z_1 ({\mathbf q}^{N_0}) = \log \left( \frac{1}{N_1!} \int \exp [- \beta (H_{11}({\mathbf r}^{N_1}) + H_{10}({\mathbf r}^{N_1}, {\mathbf q}^{N_0}) )]~d \{ {\mathbf r} \}^{N_1} \right)}

where is the fluid partition function, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{11}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{10}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{00}} are the pieces of the Hamiltonian corresponding to the fluid-fluid, fluid-matrix and matrix-matrix interactions. Assuming that the matrix is a configuration of a given fluid, with interaction hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{00}} , we can average over matrix configurations to obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~ \log Z_1 (q^{N_0}) ~d \{ q \}^{N_0}}

(see Refs. 1 and 2)

An important mathematical trick to get rid of the logarithm inside of the integral is to use the mathematical identity
.

One can apply this trick to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log Z_1} we want to average, and replace the resulting power Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (Z_1)^s} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} copies of the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_1} (replicas). The result is equivalent to evaluate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{A}_1} as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\beta\overline{A}_1=\lim_{s\to 0}\frac{d}{ds}\left(\frac{Z^{\rm rep}(s)}{Z_0}\right) } ,

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z^{\rm rep}(s)} is the partition function of a mixture with Hamiltonian

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta H^{\rm rep} (r^{N_1}, q^{N_0}) = \frac{\beta_0}{\beta}H_{00} (q^{N_0}) + \sum_{\lambda=1}^s \left( H_{01}^\lambda (r^{N_1}_\lambda, q^{N_0}) + H_{11}^\lambda (r^{N_1}_\lambda, q^{N_0})\right).}

This Hamiltonian describes a completely equilibrated system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s+1} components; the matrix the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} identical non-interacting replicas of the fluid. Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_0=Z^{\rm rep}(0)} , then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{s\to 0}\frac{d}{ds}[-\beta A^{\rm rep}(s)]=\lim_{s\to 0}\frac{d}{ds}\log Z^{\rm rep}(s)=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z^{\rm rep}(s)}=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z_0}=-\beta\overline{A}_1.}

Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen system and the replicated (equilibrium) system is given by

.

References

  1. S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics 5 pp. 965-974 (1975)
  2. S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General 9 pp. 1595-1603 (1976)