Liu hard sphere equation of state: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 14: | Line 14: | ||
: <math> | : <math> | ||
S^{ex} = \frac{ S - S^{id}}{Nk_b}= \frac{ 188\eta - 126\eta^2 - 13 | S^{ex} = \frac{ S - S^{id}}{Nk_b}= \frac{ 188\eta - 126\eta^2 - 13\eta^4 }{52(1-\eta)^2} - \frac{5}{13} ln(1-\eta). | ||
</math> | </math> | ||
Revision as of 00:10, 9 November 2020
Hongqin Liu proposed a correction to the C-S EOS which improved accuracy by almost two order of magnitude [1]:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Z={\frac {1+\eta +\eta ^{2}-{\frac {8}{13}}\eta ^{3}-\eta ^{4}+{\frac {1}{2}}\eta ^{5}}{(1-\eta )^{3}}}.}
The conjugate virial coefficient correlation is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n = 0.9423n^2 + 1.28846n - 1.84615, n > 3. }
The excess entropy is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^{ex} = \frac{ S - S^{id}}{Nk_b}= \frac{ 188\eta - 126\eta^2 - 13\eta^4 }{52(1-\eta)^2} - \frac{5}{13} ln(1-\eta). }