Liu hard sphere equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
: <math>
: <math>
B_n =  0.9423n^2 + 1.28846n - 1.84615,  n > 3.
B_n =  0.9423n^2 + 1.28846n - 1.84615,  n > 3.
</math>
The excess entropy is given by:
: <math>
S^{ex} = \frac{ S - S^{id}}{Nk_b}= \frac{ 188\eta - 126\eta^2 - 13\eta^4 - \eta^4 }{52(1-\eta)^2 - \frac{5}{13} ln(1-\eta) }.
</math>
</math>

Revision as of 00:09, 9 November 2020

Hongqin Liu proposed a correction to the C-S EOS which improved accuracy by almost two order of magnitude [1]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{ 1 + \eta + \eta^2 - \frac{8}{13}\eta^3 - \eta^4 + \frac{1}{2}\eta^5 }{(1-\eta)^3 }. }

The conjugate virial coefficient correlation is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n = 0.9423n^2 + 1.28846n - 1.84615, n > 3. }

The excess entropy is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^{ex} = \frac{ S - S^{id}}{Nk_b}= \frac{ 188\eta - 126\eta^2 - 13\eta^4 - \eta^4 }{52(1-\eta)^2 - \frac{5}{13} ln(1-\eta) }. }