NWChem: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (NWCHEM moved to NWChem)
mNo edit summary
Line 2: Line 2:
==References==
==References==
#[http://dx.doi.org/10.1016/S0010-4655(00)00065-5  Ricky A. Kendall, Edoardo Aprà, David E. Bernholdt, Eric J. Bylaska, Michel Dupuis, George I. Fann, Robert J. Harrison, Jialin Ju, Jeffrey A. Nichols, Jarek Nieplocha, T. P. Straatsma1, Theresa L. Windus1 and Adrian T. Wong "High performance computational chemistry: An overview of NWChem a distributed parallel application", Computer Physics Communications  '''128''' pp. 260-283 (2000)]
#[http://dx.doi.org/10.1016/S0010-4655(00)00065-5  Ricky A. Kendall, Edoardo Aprà, David E. Bernholdt, Eric J. Bylaska, Michel Dupuis, George I. Fann, Robert J. Harrison, Jialin Ju, Jeffrey A. Nichols, Jarek Nieplocha, T. P. Straatsma1, Theresa L. Windus1 and Adrian T. Wong "High performance computational chemistry: An overview of NWChem a distributed parallel application", Computer Physics Communications  '''128''' pp. 260-283 (2000)]
[[Category: Materials modeling and Computer simulation codes]]
[[Category: Materials modelling and computer simulation codes]]

Revision as of 19:00, 30 October 2007

NWChem is a computational chemistry package that is designed to run on high-performance parallel supercomputers as well as conventional workstation clusters. It aims to be scalable both in its ability to treat large problems efficiently, and in its usage of available parallel computing resources. NWChem has been developed by the Molecular Sciences Software group of the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL).

References

  1. Ricky A. Kendall, Edoardo Aprà, David E. Bernholdt, Eric J. Bylaska, Michel Dupuis, George I. Fann, Robert J. Harrison, Jialin Ju, Jeffrey A. Nichols, Jarek Nieplocha, T. P. Straatsma1, Theresa L. Windus1 and Adrian T. Wong "High performance computational chemistry: An overview of NWChem a distributed parallel application", Computer Physics Communications 128 pp. 260-283 (2000)