Structure factor: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
To calculate <math>S(k)</math> in computer simulations one typically uses: | To calculate <math>S(k)</math> in computer simulations one typically uses: | ||
:<math>S(k) = \frac{1}{N} \sum^{N}_{n,m=1} <\exp(-i\mathbf{k}(\mathbf{r} | :<math>S(k) = \frac{1}{N} \sum^{N}_{n,m=1} <\exp(-i\mathbf{k}(\mathbf{r}_n-\mathbf{r}_m))> </math>, | ||
where <math>\mathbf{r}_n</math> and <math>\mathbf{r}_m</math> are the coordinates of particles | |||
<math>n</math> and <math>m</math> respectively. | |||
==References== | ==References== | ||
#[http://dx.doi.org/10.1088/0953-8984/6/41/006 A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", J. Phys.: Condens. Matter, '''6''' pp. 8415-8427 (1994)] | #[http://dx.doi.org/10.1088/0953-8984/6/41/006 A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", J. Phys.: Condens. Matter, '''6''' pp. 8415-8427 (1994)] | ||
[[category: Statistical mechanics]] | [[category: Statistical mechanics]] |
Revision as of 17:33, 15 September 2011
The structure factor, , for a monatomic system is defined by:
where is the scattering wave-vector modulus
The structure factor is basically a Fourier transform of the pair distribution function ,
At zero wavenumber, i.e. ,
from which one can calculate the isothermal compressibility.
To calculate in computer simulations one typically uses:
- ,
where and are the coordinates of particles and respectively.