Cole equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New eos)
 
m (Added book ISBN codes)
Line 1: Line 1:
The '''Cole equation of state''' <ref>R.H. Cole, Underwater Explosions. Princeton University Press 1948</ref><ref>
The '''Cole equation of state''' <ref>R. H. Cole "Underwater Explosions", Princeton University Press (1948) ISBN 9780691069227</ref><ref>
G.K. Batchelor, An introduction to fluid mechanics. Cambridge University Press 1974 </ref>
G. K. Batchelor "An introduction to fluid mechanics", Cambridge University Press (1974) ISBN  0521663962</ref>
can be written, when atmospheric pressure is negligible, has the form
can be written, when atmospheric pressure is negligible, has the form



Revision as of 14:11, 5 September 2011

The Cole equation of state [1][2] can be written, when atmospheric pressure is negligible, has the form

.

In it, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_0} is a reference density around which the density varies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} is an exponent and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} is a pressure parameter.

Usually, the equation is used to model a nearly incompressible system. In this case, the exponent is often set to a value of 7, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} is large, in the following sense. The fluctuations of the density are related to the speed of sound as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\delta \rho}{\rho} = \frac{v^2}{c^2} ,}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} is the largest velocity, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is the speed of sound (the ratio Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v/c} is Mach's number). The speed of sound can be seen to be

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c^2 = \frac{\gamma B}{\rho_0}. }

Therefore, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=100 \rho_0 v^2 / \gamma} , the relative density fluctuations will be of about 0.01.

References

  1. R. H. Cole "Underwater Explosions", Princeton University Press (1948) ISBN 9780691069227
  2. G. K. Batchelor "An introduction to fluid mechanics", Cambridge University Press (1974) ISBN 0521663962