Ornstein-Zernike relation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Created a "notation" box.)
m (Added an internal link)
Line 12: Line 12:
</div>
</div>


The '''Ornstein-Zernike relation''' (OZ) integral equation <ref>L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''17''' pp. 793- (1914)</ref> is given by:
The '''Ornstein-Zernike relation''' integral equation <ref>L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''17''' pp. 793- (1914)</ref> is given by:
:<math>h=h\left[c\right]</math>
:<math>h=h\left[c\right]</math>
where  <math>h[c]</math> denotes a functional of <math>c</math>. This relation is exact.
where  <math>h[c]</math> denotes a functional of <math>c</math>. This relation is exact.
Line 20: Line 20:
Because of this <math>h</math> must be determined self-consistently.
Because of this <math>h</math> must be determined self-consistently.
This need for self-consistency is characteristic of all many-body problems.
This need for self-consistency is characteristic of all many-body problems.
(Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the OZ has the form (5.2.7)
(Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the Ornstein-Zernike relation  has the form (5.2.7)
:<math>h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3</math>
:<math>h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3</math>
If the system is both homogeneous and isotropic, the OZ relation becomes (Eq. 6 of Ref. 1)
If the system is both homogeneous and isotropic, the Ornstein-Zernike  relation becomes (Eq. 6 of Ref. 1)


:<math>\gamma ({\mathbf r}) \equiv  h({\mathbf r}) - c({\mathbf r}) = \rho \int  h({\mathbf r'})~c(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}</math>
:<math>\gamma ({\mathbf r}) \equiv  h({\mathbf r}) - c({\mathbf r}) = \rho \int  h({\mathbf r'})~c(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}</math>
Line 53: Line 53:
where the bold lines connecting root points denote <math>c</math> functions, the blobs denote <math>h</math> functions.
where the bold lines connecting root points denote <math>c</math> functions, the blobs denote <math>h</math> functions.
An arrow pointing from left to right indicates an uphill path from one root
An arrow pointing from left to right indicates an uphill path from one root
point to another. An `uphill path' is a sequence of Mayer bonds passing through increasing
point to another. An `uphill path' is a sequence of [[Mayer f-function |Mayer bonds]] passing through increasing
particle labels.
particle labels.
The OZ relation can be derived by performing a functional differentiation  
The Ornstein-Zernike relation can be derived by performing a functional differentiation  
of the grand canonical distribution function (HM check this).
of the grand canonical distribution function (HM check this).
==OZ equation in Fourier space==
==Ornstein-Zernike relation in Fourier space==
The Ornstein-Zernike equation may be written in [[Fourier analysis |Fourier space]] as (<ref>[http://dx.doi.org/10.1063/1.470724      Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics '''103''' pp. 2625-2633 (1995)]</ref> Eq. 5):
The Ornstein-Zernike equation may be written in [[Fourier analysis |Fourier space]] as (<ref>[http://dx.doi.org/10.1063/1.470724      Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics '''103''' pp. 2625-2633 (1995)]</ref> Eq. 5):



Revision as of 13:48, 2 September 2010

Notation used:

The Ornstein-Zernike relation integral equation [1] is given by:

where denotes a functional of . This relation is exact. This is complemented by the closure relation

Note that depends on , and depends on . Because of this must be determined self-consistently. This need for self-consistency is characteristic of all many-body problems. (Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the Ornstein-Zernike relation has the form (5.2.7)

If the system is both homogeneous and isotropic, the Ornstein-Zernike relation becomes (Eq. 6 of Ref. 1)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma ({\mathbf r}) \equiv h({\mathbf r}) - c({\mathbf r}) = \rho \int h({\mathbf r'})~c(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}}

In words, this equation (Hansen and McDonald, section 5.2 p. 107)

"...describes the fact that the total correlation between particles 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2)} , is due in part to the direct correlation between 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(1,2)} , but also to the indirect correlation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)} , propagated via increasingly large numbers of intermediate particles."

Notice that this equation is basically a convolution, i.e.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h \equiv c + \rho h\otimes c }

(Note: the convolution operation written here as is more frequently written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) This can be seen by expanding the integral in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r)} (here truncated at the fourth iteration):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h({\mathbf r}) = c({\mathbf r}) + \rho \int c(|{\mathbf r} - {\mathbf r'}|) c({\mathbf r'}) {\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^2 \iint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c({\mathbf r''}) {\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^3 \iiint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c({\mathbf r'''}) {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^4 \iiiint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c(|{\mathbf r'''} - {\mathbf r''''}|) h({\mathbf r''''}) {\rm d}{\mathbf r''''} {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
etc.

Diagrammatically this expression can be written as [2]:

where the bold lines connecting root points denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} functions, the blobs denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} functions. An arrow pointing from left to right indicates an uphill path from one root point to another. An `uphill path' is a sequence of Mayer bonds passing through increasing particle labels. The Ornstein-Zernike relation can be derived by performing a functional differentiation of the grand canonical distribution function (HM check this).

Ornstein-Zernike relation in Fourier space

The Ornstein-Zernike equation may be written in Fourier space as ([3] Eq. 5):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} = ({\mathbf I} - \rho {\mathbf \hat{c}})^{-1} {\mathbf \hat{c}} \rho {\mathbf \hat{c}}}

The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly to:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} (k) = \frac{4 \pi}{k} \int_0^\infty r~\sin (kr) \gamma(r) dr}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r) = \frac{1}{2 \pi^2 r} \int_0^\infty k~\sin (kr) \hat{\gamma}(r) dk}

Note:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{h}(0) = \int h(r) {\rm d}{\mathbf r}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{c}(0) = \int c(r) {\rm d}{\mathbf r}}

References

  1. L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. 17 pp. 793- (1914)
  2. James A. Given "Liquid-state methods for random media: Random sequential adsorption", Physical Review A 45 pp. 816-824 (1992)
  3. Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics 103 pp. 2625-2633 (1995)

Related reading

  • Jean-Pierre Hansen and I.R. McDonald "Theory of Simple Liquids", Academic Press (2006) (Third Edition) ISBN 0-12-370535-5 § 3.5