Modulated patchy Lennard-Jones model: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) (New page: The '''modulated patchy Lennard-Jones model''' is given by <ref>[http://dx.doi.org/10.1039/b614955c Jonathan P. K. Doye, Ard A. Louis, I-Chun Lin, Lucy R. Allen, Eva G. Noya, Alex W. Wilbe...) |
Carl McBride (talk | contribs) m (Added equation numbers) |
||
Line 1: | Line 1: | ||
The '''modulated patchy Lennard-Jones model''' is given by | The '''modulated patchy Lennard-Jones model''' is given by | ||
<ref>[http://dx.doi.org/10.1039/b614955c Jonathan P. K. Doye, Ard A. Louis, I-Chun Lin, Lucy R. Allen, Eva G. Noya, Alex W. Wilber, Hoong Chwan Kok and Rosie Lyus "Controlling crystallization and its absence: proteins, colloids and patchy models", Physical Chemistry Chemical Physics '''9''' pp. 2197-2205 (2007)]</ref> | <ref>[http://dx.doi.org/10.1039/b614955c Jonathan P. K. Doye, Ard A. Louis, I-Chun Lin, Lucy R. Allen, Eva G. Noya, Alex W. Wilber, Hoong Chwan Kok and Rosie Lyus "Controlling crystallization and its absence: proteins, colloids and patchy models", Physical Chemistry Chemical Physics '''9''' pp. 2197-2205 (2007)]</ref> (Eqs. 4.3 and 4.4) | ||
:<math> | :<math>\Phi_{\mathrm {patchy}}({\mathbf r}_{ij},{\mathbf \Omega}_i,{\mathbf \Omega}_j) = | ||
\left\{ \begin{array}{lll} | \left\{ \begin{array}{lll} | ||
\Phi_{\mathrm {LJ}}(r_{ij}) & ; & r_{ij} < \sigma_{\mathrm {LJ}} \\ | |||
\Phi_{\mathrm{LJ}}(r_{ij}) \exp \left(-\frac{\theta_{k_{min},ij}^2}{2\sigma^2 } \right) \exp \left(-\frac{\theta_{l_{min},ji}^2}{2\sigma^2 } \right) | |||
& ; & r_{ij} \ge \sigma_{\mathrm{LJ}} | & ; & r_{ij} \ge \sigma_{\mathrm{LJ}} | ||
Line 13: | Line 13: | ||
</math> | </math> | ||
where <math> | where <math>\Phi_{\mathrm {LJ}}(r_{ij})</math> is the [[Lennard-Jones model | Lennard-Jones potential]] and | ||
[[Image:patchy_model.png|center]] | [[Image:patchy_model.png|center]] | ||
==References== | ==References== |
Revision as of 12:02, 14 May 2010
The modulated patchy Lennard-Jones model is given by [1] (Eqs. 4.3 and 4.4)
where is the Lennard-Jones potential and
