Gibbs-Duhem integration: Difference between revisions
Jump to navigation
Jump to search
m (→Basic Features) |
m (→Basic Features) |
||
Line 18: | Line 18: | ||
In addition if we are dealing with a statistical mechanics model, with certain parameters that we can represent as <math> \lambda </math> , the | In addition if we are dealing with a statistical mechanics model, with certain parameters that we can represent as <math> \lambda </math> , the | ||
model should be the same in both phases. | model should be the same in both phases. | ||
== Example: phase equilibria of one-compoment system == | |||
* Consider that at given conditions of <math> T , p, \lambda </math> two phases of the systems are at equlibrium | |||
== References == | == References == | ||
#[http://dx.doi.org/10.1080/00268979300100881 David A. Kofke, Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation, Mol. Phys. '''78''' , pp 1331 - 1336 (1993)] | #[http://dx.doi.org/10.1080/00268979300100881 David A. Kofke, Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation, Mol. Phys. '''78''' , pp 1331 - 1336 (1993)] | ||
#[http://dx.doi.org/10.1063/1.465023 David A. Kofke, Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line, J. Chem. Phys. '''98''' ,pp. 4149-4162 (1993) ] | #[http://dx.doi.org/10.1063/1.465023 David A. Kofke, Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line, J. Chem. Phys. '''98''' ,pp. 4149-4162 (1993) ] |
Revision as of 11:40, 2 March 2007
CURRENTLY THIS ARTICLE IS UNDER CONSTRUCTION
History
The so-called Gibbs-Duhem Integration referes to a number of methods that couple molecular simulation techniques with thermodynamic equations in order to draw phase coexistence lines.
The method was proposed by Kofke (Ref 1-2).
Basic Features
Consider two thermodynamic phases: , at thermodynamic equilibrium at certain conditions. The thermodynamic equilibrium implies:
- Equal temperature in both phases: , i.e. thermal equilbirum.
- Equal pressure in both phases , i.e. mechanical equilbrium.
- Equal chemical potentials for the components , i.e. material equilibrium.
In addition if we are dealing with a statistical mechanics model, with certain parameters that we can represent as , the model should be the same in both phases.
Example: phase equilibria of one-compoment system
- Consider that at given conditions of two phases of the systems are at equlibrium
References
- David A. Kofke, Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation, Mol. Phys. 78 , pp 1331 - 1336 (1993)
- David A. Kofke, Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line, J. Chem. Phys. 98 ,pp. 4149-4162 (1993)