TIP4P/Ice model of water: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Started a section on the Liquid-vapour equilibria) |
Carl McBride (talk | contribs) (Added melting point data) |
||
(8 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
The '''TIP4P/ | The '''TIP4P/Ice''' model | ||
<ref>[http://dx.doi.org/10.1063/1.1931662 L. F. Abascal, E. Sanz, R. García Fernández, and C. Vega "A potential model for the study of ices and amorphous water: TIP4P/Ice", Journal of Chemical Physics, '''122''' 234511 (2005)]</ref>. | <ref>[http://dx.doi.org/10.1063/1.1931662 L. F. Abascal, E. Sanz, R. García Fernández, and C. Vega "A potential model for the study of ices and amorphous water: TIP4P/Ice", Journal of Chemical Physics, '''122''' 234511 (2005)]</ref> | ||
TIP4P/ | is a re-parameterisation of the [[TIP4P]] potential for simulations of [[ice phases]]. | ||
TIP4P/Ice is a rigid planar model, having a similar geometry to the original [[BF |Bernal and Fowler model]]. | |||
==Parameters== | ==Parameters== | ||
[[Image: | [[Image:Four_site_water_model.png|center|400px]] | ||
Line 13: | Line 14: | ||
|} | |} | ||
*[[DL_POLY FIELD file for the TIP4P/ | *[[DL_POLY FIELD file for the TIP4P/Ice model]] | ||
*[[GROMACS topology file for the TIP4P/ | *[[GROMACS topology file for the TIP4P/Ice model]] | ||
==Liquid-vapour equilibria== | ==Liquid-vapour equilibria== | ||
<ref>[http://dx.doi.org/10.1063/1.2215612 C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics '''125''' 034503 (2006)]</ref> | |||
==Virial coefficients== | |||
The [[second virial coefficient]] has been calculated by Chialvo et al <ref>[http://dx.doi.org/10.1016/j.molliq.2006.08.018 Ariel A. Chialvo, Albert Bartók and András Baranyai "On the re-engineered TIP4P water models for the prediction of vapor–liquid equilibrium", Journal of Molecular Liquids '''129''' pp. 120-124 (2006)]</ref>. | |||
==Melting point== | |||
<math> T_m = 269.8 \pm 0.1</math> K <ref>[https://doi.org/10.1063/1.5008478 M. M. Conde, M. Rovere, and P. Gallo "High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique", Journal of Chemical Physics '''147''' 244506 (2017)]</ref>. | |||
==References== | ==References== | ||
<references/> | <references/> |
Latest revision as of 12:36, 9 January 2018
The TIP4P/Ice model [1] is a re-parameterisation of the TIP4P potential for simulations of ice phases. TIP4P/Ice is a rigid planar model, having a similar geometry to the original Bernal and Fowler model.
Parameters[edit]

(Å) | HOH , deg | (Å) | (K) | q(O) (e) | q(H) (e) | q(M) (e) | (Å) |
0.9572 | 104.52 | 3.1668 | 106.1 | 0 | 0.5897 | -2q(H) | 0.1577 |
Liquid-vapour equilibria[edit]
Virial coefficients[edit]
The second virial coefficient has been calculated by Chialvo et al [3].
Melting point[edit]
K [4].
References[edit]
- ↑ L. F. Abascal, E. Sanz, R. García Fernández, and C. Vega "A potential model for the study of ices and amorphous water: TIP4P/Ice", Journal of Chemical Physics, 122 234511 (2005)
- ↑ C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics 125 034503 (2006)
- ↑ Ariel A. Chialvo, Albert Bartók and András Baranyai "On the re-engineered TIP4P water models for the prediction of vapor–liquid equilibrium", Journal of Molecular Liquids 129 pp. 120-124 (2006)
- ↑ M. M. Conde, M. Rovere, and P. Gallo "High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique", Journal of Chemical Physics 147 244506 (2017)