Gay-Berne model: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| mNo edit summary | Carl McBride (talk | contribs)  m (→References:   Added a recent publication) | ||
| (8 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
| The '''Gay-Berne model''' <ref>[http://dx.doi.org/10.1063/1.441483  J. G. Gay and B. J. Berne "Modification of the overlap potential to mimic a linear site–site potential", Journal of Chemical Physics '''74''' pp. 3316-3319  (1981)]</ref> is used extensively in simulations of [[liquid crystals | liquid crystalline]] systems. The Gay-Berne model | |||
| The '''Gay-Berne'''  | is an anisotropic form of the [[Lennard-Jones model | Lennard-Jones 12:6 potential]]. | ||
| is an  | :<math>U_{ij}^{\mathrm LJ/GB} = | ||
| 4 \epsilon_0^{\mathrm LJ/GB} | |||
| [\epsilon^{\mathrm LJ/GB}]^{\mu} | |||
| ( {\mathbf {\hat u}}_j , {\mathbf {\hat r}}_{ij} ) | |||
| \times  \left[ \left( | |||
| \frac{\sigma_0^{\mathrm LJ/GB} | |||
| } | |||
| { | |||
| r_{ij} - | |||
| \sigma^{\mathrm LJ/GB} | |||
| ({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) | |||
| + {\sigma_0}^{\mathrm LJ/GB} | |||
| } | |||
| \right)^{12} | |||
| - | |||
| \left( | |||
| \frac | |||
| { | |||
| \sigma_0^{\mathrm LJ/GB} | |||
| } | |||
| { | |||
| r_{ij} - | |||
| \sigma^{\mathrm LJ/GB} | |||
| ({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) | |||
| + {\sigma_0}^{\mathrm LJ/GB} | |||
| } | |||
| \right)^{6} | |||
| \right], | |||
| </math> | |||
| where, in the limit of one of the particles being spherical, gives: | |||
| :<math>\sigma^{\mathrm LJ/GB} ({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) ={\sigma_0}{[1 - \chi \alpha^{-2} | |||
| {({\mathbf {\hat{r}}}_{ij} \cdot  {\mathbf {\hat{u}}}_j )}^{2}]}^{-1/2}</math> | |||
| and | |||
| :<math>\epsilon^{\mathrm LJ/GB}({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) ={\epsilon_0}{[1 - \chi\prime  \alpha\prime^{-2} | |||
| {({\mathbf {\hat{r}}}_{ij} \cdot  {\mathbf {\hat{u}}}_j )}^{2}]}</math> | |||
| with | |||
| :<math>\frac{\chi}{\alpha^{2}}=\frac{l_{j}^{2}-d_{j}^{2}}{l_{j}^{2}+d_{i}^{2}}</math> | |||
| and | |||
| :<math>\frac{\chi \prime }{\alpha \prime^{2}}=1- {\left(\frac{\epsilon_{ee}}{\epsilon_{ss}}\right)} ^{\frac{1}{\mu}}.</math> | |||
| A modification of the Gay-Berne potential has recently been proposed that is said to result in a 10-20% improvement in computational speed, as well as accuracy <ref>[http://dx.doi.org/10.1063/1.4729745 Rasmus A. X. Persson "Note: Modification of the Gay-Berne potential for improved accuracy and speed", Journal of Chemical Physics '''136''' 226101 (2012)]</ref>. | |||
| ==Phase diagram== | |||
| :''Main article: [[Phase diagram of the Gay-Berne model]]'' | |||
| ==See also== | |||
| *[[Soft-core Gay-Berne model]] | |||
| ==References== | ==References== | ||
| <references/> | |||
| '''Related reading''' | |||
| *[http://dx.doi.org/10.1016/0009-2614(95)00212-M R. Berardi, C. Fava and C. Zannoni "A generalized Gay-Berne intermolecular potential for biaxial particles", Chemical Physics Letters '''236''' pp. 462-468 (1995)] | |||
| *[http://dx.doi.org/10.1103/PhysRevE.54.559  Douglas J. Cleaver, Christopher M. Care, Michael P. Allen, and Maureen P. Neal "Extension and generalization of the Gay-Berne potential" Physical Review E '''54''' pp. 559-567 (1996)] | |||
| *[http://dx.doi.org/10.1016/S0009-2614(98)01090-2 Roberto Berardi, Carlo Fava, Claudio Zannoni "A Gay–Berne potential for dissimilar biaxial particles",  Chemical Physics Letters '''297''' pp. 8-14 (1998)] | |||
| *[http://dx.doi.org/10.1080/00268976.2016.1274437 Luis F. Rull and José Manuel Romero-Enrique "Computer simulation study of the nematic-vapour interface in the Gay-Berne model", Molecular Physics '''115''' pp. 1214-1224 (2017)] | |||
| [[category:liquid crystals]] | [[category:liquid crystals]] | ||
| [[category:models]] | [[category:models]] | ||
Latest revision as of 15:33, 19 May 2017
The Gay-Berne model [1] is used extensively in simulations of liquid crystalline systems. The Gay-Berne model is an anisotropic form of the Lennard-Jones 12:6 potential.
where, in the limit of one of the particles being spherical, gives:
and
with
and
A modification of the Gay-Berne potential has recently been proposed that is said to result in a 10-20% improvement in computational speed, as well as accuracy [2].
Phase diagram[edit]
- Main article: Phase diagram of the Gay-Berne model
See also[edit]
References[edit]
- ↑ J. G. Gay and B. J. Berne "Modification of the overlap potential to mimic a linear site–site potential", Journal of Chemical Physics 74 pp. 3316-3319 (1981)
- ↑ Rasmus A. X. Persson "Note: Modification of the Gay-Berne potential for improved accuracy and speed", Journal of Chemical Physics 136 226101 (2012)
Related reading
- R. Berardi, C. Fava and C. Zannoni "A generalized Gay-Berne intermolecular potential for biaxial particles", Chemical Physics Letters 236 pp. 462-468 (1995)
- Douglas J. Cleaver, Christopher M. Care, Michael P. Allen, and Maureen P. Neal "Extension and generalization of the Gay-Berne potential" Physical Review E 54 pp. 559-567 (1996)
- Roberto Berardi, Carlo Fava, Claudio Zannoni "A Gay–Berne potential for dissimilar biaxial particles", Chemical Physics Letters 297 pp. 8-14 (1998)
- Luis F. Rull and José Manuel Romero-Enrique "Computer simulation study of the nematic-vapour interface in the Gay-Berne model", Molecular Physics 115 pp. 1214-1224 (2017)