Canonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 5: Line 5:
* Volume, <math> V </math>
* Volume, <math> V </math>


* Temperature, <math> T </math>
* [[Temperature]], <math> T </math>


== Partition Function ==
== Partition Function ==
The [[partition function]], <math>Q</math>,
for a system of <math>N</math> identical particles each of mass <math>m</math> is given by


''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math>
:<math>Q_{NVT}=\frac{1}{N!h^{3N}}\iint d{\mathbf p}^N d{\mathbf r}^N \exp \left[ - \frac{H({\mathbf p}^N,{\mathbf r}^N)}{k_B T}\right]</math>


:<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math>
where <math>h</math> is [[Planck constant |Planck's constant]], <math>T</math> is the [[temperature]], <math>k_B</math> is the [[Boltzmann constant]] and <math>H(p^N, r^N)</math> is the [[Hamiltonian]]
corresponding to the total energy of the system.
For a classical  one-component system in a three-dimensional space, <math> Q_{NVT} </math>,
is given by:
 
:<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] ~~~~~~~~~~ \left( \frac{V}{N\Lambda^3} \gg 1 \right) </math>


where:
where:
Line 17: Line 24:
* <math> \Lambda </math> is the [[de Broglie thermal wavelength]] (depends on the temperature)
* <math> \Lambda </math> is the [[de Broglie thermal wavelength]] (depends on the temperature)


* <math> \beta = \frac{1}{k_B T} </math>, with <math> k_B </math> being the [[Boltzmann constant]]
* <math> \beta := \frac{1}{k_B T} </math>, with <math> k_B </math> being the [[Boltzmann constant]], and ''T'' the [[temperature]].


* <math> U </math> is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
* <math> U </math> is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
Line 23: Line 30:
* <math> \left( R^*\right)^{3N} </math> represent the 3N position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math>
* <math> \left( R^*\right)^{3N} </math> represent the 3N position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math>


==See also==
*[[Ideal gas partition function]]
==References==
<references/>


[[Category:Statistical mechanics]]
[[Category:Statistical mechanics]]

Latest revision as of 12:16, 31 August 2011

Variables:

  • Number of Particles, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N }
  • Volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V }
  • Temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T }

Partition Function[edit]

The partition function, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q} , for a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} identical particles each of mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{1}{N!h^{3N}}\iint d{\mathbf p}^N d{\mathbf r}^N \exp \left[ - \frac{H({\mathbf p}^N,{\mathbf r}^N)}{k_B T}\right]}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} is Planck's constant, is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(p^N, r^N)} is the Hamiltonian corresponding to the total energy of the system. For a classical one-component system in a three-dimensional space, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT} } , is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] ~~~~~~~~~~ \left( \frac{V}{N\Lambda^3} \gg 1 \right) }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta := \frac{1}{k_B T} } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B } being the Boltzmann constant, and T the temperature.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U } is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( R^*\right)^{3N} } represent the 3N position coordinates of the particles (reduced with the system size): i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d (R^*)^{3N} = 1 }

See also[edit]

References[edit]