Computational implementation of integral equations: Difference between revisions
Carl McBride (talk | contribs) |
Carl McBride (talk | contribs) mNo edit summary |
||
| (6 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
Integral equations are solved numerically. | Integral equations are solved numerically. | ||
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math> | One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math> | ||
and a [[ | and a [[closure relations | closure relation]], <math>c_2 (12)</math> (which | ||
incorporates the [[bridge function]] <math>B(12)</math>). | incorporates the [[bridge function]] <math>B(12)</math>). | ||
The numerical solution is iterative; | The numerical solution is iterative; | ||
| Line 46: | Line 46: | ||
====Evaluate==== | ====Evaluate==== | ||
Evaluations of <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math> | Evaluations of <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math> | ||
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomial]] <math>P_\nu(cos \theta)</math> | where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomials |Legendre polynomial]] <math>P_\nu(cos \theta)</math> | ||
where <math>y_j</math> are the <math>\nu</math> roots of the [[Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math> | where <math>y_j</math> are the <math>\nu</math> roots of the [[Chebyshev polynomials |Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math> | ||
and where <math>z_{1_k},z_{2_k}</math> are the <math>\nu</math> roots of the | and where <math>z_{1_k},z_{2_k}</math> are the <math>\nu</math> roots of the Chebyshev polynomial | ||
<math>T_{\nu}(\ cos \chi)</math> | <math>T_{\nu}(\ cos \chi)</math> | ||
thus | thus | ||
| Line 139: | Line 139: | ||
(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3), | (see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3), | ||
where <math>J_l(x)</math> is a [[Bessel function]] of order <math>l</math>. | where <math>J_l(x)</math> is a [[Bessel functions |Bessel function]] of order <math>l</math>. | ||
`step-down' operations can be performed by way of sin and cos operations | `step-down' operations can be performed by way of sin and cos operations | ||
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado Ref. 3. | of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado Ref. 3. | ||
| Line 149: | Line 149: | ||
:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math> | :<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math> | ||
====Conversion from the spatial reference frame back to the axial reference frame==== | ====Conversion from the spatial reference frame back to the axial reference frame==== | ||
| Line 172: | Line 171: | ||
For molecular fluids (see Eq. 19 of Lado Ref. 3) | For molecular fluids (see Eq. 19 of Lado Ref. 3) | ||
:<math>\tilde{{\mathbf S}}_{m}(k) = (-1)^{m}\rho \left[{\mathbf I} - (-1)^{m} \rho \tilde{\mathbf C}_{m}(k) \right]^{-1} \tilde{\mathbf C}_{m}(k)\tilde{\mathbf C}_{m}(k)</math> | |||
where <math>\tilde{{\mathbf S}}_{m}(k)</math> and <math>\tilde{\mathbf C}_{m}(k)</math> are matrices | |||
</math> | |||
with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>. | with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>. | ||
For mixtures of simple fluids (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109): | |||
:<math>\tilde{\Gamma}(k) = {\mathbf D} \left[{\mathbf I} - {\mathbf D} \tilde{\mathbf C}(k)\right]^{-1} \tilde{\mathbf C}(k)\tilde{\mathbf C}(k)</math> | |||
===Conversion back from Fourier space to Real space=== | ===Conversion back from Fourier space to Real space=== | ||
| Line 199: | Line 197: | ||
*[http://dx.doi.org/10.1016/0010-4655(70)90034-2 Taro Tamura "Angular momentum coupling coefficients", Computer Physics Communications '''1''' pp. 337-342 (1970)] | *[http://dx.doi.org/10.1016/0010-4655(70)90034-2 Taro Tamura "Angular momentum coupling coefficients", Computer Physics Communications '''1''' pp. 337-342 (1970)] | ||
*[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications '''2''' pp. 381-382 (1971)] | *[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications '''2''' pp. 381-382 (1971)] | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)] | #[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)] | ||
Latest revision as of 15:57, 31 January 2008
Integral equations are solved numerically. One has the Ornstein-Zernike relation, and a closure relation, (which incorporates the bridge function ). The numerical solution is iterative;
- trial solution for
- calculate
- use the Ornstein-Zernike relation to generate a new etc.
Note that the value of is local, i.e. the value of at a given point is given by the value of at this point. However, the Ornstein-Zernike relation is non-local. The way to convert the Ornstein-Zernike relation into a local equation is to perform a (fast) Fourier transform (FFT). Note: convergence is poor for liquid densities. (See Ref.s 1 to 6).
Picard iteration[edit]
Picard iteration generates a solution of an initial value problem for an ordinary differential equation (ODE) using fixed-point iteration. Here are the four steps used to solve integral equations:
Closure relation [edit]
(Note: for linear fluids )
Perform the summation[edit]
where is the separation between molecular centers and the sets of Euler angles needed to specify the orientations of the two molecules, with
with .
Define the variables[edit]
Thus
- .
Evaluate[edit]
Evaluations of are performed at the discrete points where the are the roots of the Legendre polynomial where are the roots of the Chebyshev polynomial and where are the roots of the Chebyshev polynomial thus
where
where is the angular, , part of the
rotation matrix ,
and
For the limits in the summations
The above equation constitutes a separable five-dimensional transform. To rapidly evaluate this expression it is broken down into five one-dimensional transforms:
Operations involving the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_m(y)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_n(z)} basis functions are performed in complex arithmetic. The sum of these operations is asymptotically smaller than the previous expression and thus constitutes a ``fast separable transform". Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NG} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} are parameters; is the number of nodes in the Gauss integration, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} the the max index in the truncated rotational invariants expansion.
Integrate over angles Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2(12)} [edit]
Use Gauss-Legendre quadrature for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} Use Gauss-Chebyshev quadrature for , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_2} . Thus
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{mns}^{\mu \nu} (r) = w^3 \sum_{x_{1_i},x_{2_i},j,z_{1_k},z_{2_k}=1}^{NG} w_{i_1}w_{i_2}c_2(r,x_{1_i},x_{2_i},j,z_{1_k},z_{2_k}) \hat{d}_{s \mu}^m (x_{1_i}) \hat{d}_{\overline{s} \nu}^n (x_{2_i}) e_{\overline{s}}(j) e_{\overline{\mu}} (z_{1_k}) e_{\overline{\nu}} (z_{2_k})}
where the Gauss-Legendre quadrature weights are given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_i= \frac{1}{(1-x_i^2)}[P_{NG}^{'} (x_i)]^2}
while the Gauss-Chebyshev quadrature has the constant weight
Perform FFT from Real to Fourier space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{mns}^{\mu \nu} (r) \rightarrow \tilde{c}_{mns}^{\mu \nu} (k)} [edit]
This is non-trivial and is undertaken in three steps:
Conversion from axial reference frame to spatial reference frame[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{mns}^{\mu \nu} (r) \rightarrow c_{\mu \nu}^{mnl} (r)}
this is done using the Blum transformation (Refs 7, 8 and 9):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left( \begin{array}{ccc} m&n&l\\ s&\overline{s}&0 \end{array} \right)g_{mns}^{\mu \nu} (r)}
Fourier-Bessel Transforms[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{\mu \nu}^{mnl} (r) \rightarrow \tilde{c}_{\mu \nu}^{mnl} (k)}
(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3), where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_l(x)} is a Bessel function of order Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l} . `step-down' operations can be performed by way of sin and cos operations of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado Ref. 3. The Fourier-Bessel transform is also known as a Hankel transform. It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(q)=2\pi \int_0^\infty f(r) J_0(2 \pi qr)r ~{\rm d}r}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q}
Conversion from the spatial reference frame back to the axial reference frame[edit]
this is done using the Blum transformation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{mns}^{\mu \nu} (r) = \sum_{l=|m-n|}^{m+n} \left( \begin{array}{ccc} m&n&l\\ s&\overline{s}&0 \end{array} \right) g_{\mu \nu}^{mnl}(r)}
Ornstein-Zernike relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{c}_{mns}^{\mu \nu} (k) \rightarrow \tilde{\gamma}_{mns}^{\mu \nu} (k)} [edit]
For simple fluids:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho \tilde{c}_2 (k)}}
For molecular fluids (see Eq. 19 of Lado Ref. 3)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{{\mathbf S}}_{m}(k) = (-1)^{m}\rho \left[{\mathbf I} - (-1)^{m} \rho \tilde{\mathbf C}_{m}(k) \right]^{-1} \tilde{\mathbf C}_{m}(k)\tilde{\mathbf C}_{m}(k)}
where and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\mathbf C}_{m}(k)} are matrices with elements Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m} .
For mixtures of simple fluids (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\Gamma}(k) = {\mathbf D} \left[{\mathbf I} - {\mathbf D} \tilde{\mathbf C}(k)\right]^{-1} \tilde{\mathbf C}(k)\tilde{\mathbf C}(k)}
Conversion back from Fourier space to Real space[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \gamma_{mns}^{\mu \nu} (r)}
(basically the inverse of step 2).
Axial reference frame to spatial reference frame[edit]
Inverse Fourier-Bessel transform[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow \gamma^{mnl}_{\mu \nu} (r)}
'Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k}
Change from spatial reference frame back to axial reference frame[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma^{mnl}_{\mu \nu} (r) \rightarrow \gamma_{mns}^{\mu \nu} (r)} .
Ng acceleration[edit]
Angular momentum coupling coefficients[edit]
- Taro Tamura "Angular momentum coupling coefficients", Computer Physics Communications 1 pp. 337-342 (1970)
- J. G. Wills "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications 2 pp. 381-382 (1971)
References[edit]
- M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics 38 pp. 1781-1794 (1979)
- Stanislav Labík, Anatol Malijevský and Petr Voncaronka "A rapidly convergent method of solving the OZ equation", Molecular Physics 56 pp. 709-715 (1985)
- F. Lado "Integral equations for fluids of linear molecules I. General formulation", Molecular Physics 47 pp. 283-298 (1982)
- F. Lado "Integral equations for fluids of linear molecules II. Hard dumbell solutions", Molecular Physics 47 pp. 299-311 (1982)
- F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics 47 pp. 313-317 (1982)
- Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics 68 pp. 87-95 (1989)
- L. Blum and A. J. Torruella "Invariant Expansion for Two-Body Correlations: Thermodynamic Functions, Scattering, and the Ornstein—Zernike Equation", Journal of Chemical Physics 56 pp. pp. 303-310 (1972)
- L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics 57 pp. 1862-1869 (1972)
- L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics 58 pp. 3295-3303 (1973)
- P. G. Kusalik and G. N. Patey " On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration", Journal of Chemical Physics 88 pp. 7715-7738 (1988)