Charge equilibration for molecular dynamics simulations: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎See also: Added an internal link)
 
(One intermediate revision by the same user not shown)
Line 19: Line 19:
:<math>J_{ij} ({\mathbf{r}}_{ij}) = \left\langle \phi_i \phi_j  \left\vert \frac{1}{| {\mathbf{r}}_{i} - {\mathbf{r}}_{j}  |} \right\vert \phi_i \phi_j \right\rangle</math>
:<math>J_{ij} ({\mathbf{r}}_{ij}) = \left\langle \phi_i \phi_j  \left\vert \frac{1}{| {\mathbf{r}}_{i} - {\mathbf{r}}_{j}  |} \right\vert \phi_i \phi_j \right\rangle</math>


where <math>\phi</math> represents Slater-type orbitals.
where <math>\phi</math> represents a normalised ''ns'' Slater-type orbital.


==Split-charge formalism==
==Split-charge formalism==
Line 29: Line 29:
==See also==
==See also==
*[[Drude oscillators]]
*[[Drude oscillators]]
*[[Polarizable point dipoles]]
==References==
==References==
<references/>
<references/>

Latest revision as of 14:54, 16 December 2010

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

Charge equilibration (QEq) for molecular dynamics simulations [1] [2] is a technique for calculating the distribution of charges within a (large) molecule. This distribution can change with time to match changes in the local environment.

Electronegativity and electronic hardness[edit]

The atomic electronegativity is given by [3]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi = \frac{\mathrm{IP + EA} }{2} \approx \frac{\partial E}{\partial Q}}

where IP is the ionisation potential, and EA is the electron affinity. The electronic hardness is given by [4]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta = \mathrm{IP - EA} \approx \frac{\partial^2 E}{\partial Q^2} }

Charge equilibration energy[edit]

Using the above expressions one has the following second order approximation for the total electrostatic energy ([2] Eq. 6)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = \sum_i \left( q_i\chi_i + \frac{q_i^2}{2} \eta_i \right) + \sum_{i \neq j} q_i q_j J_{ij}}

The last term is a "shielded" Coulombic interaction, where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{ij} ({\mathbf{r}}_{ij}) = \left\langle \phi_i \phi_j \left\vert \frac{1}{| {\mathbf{r}}_{i} - {\mathbf{r}}_{j} |} \right\vert \phi_i \phi_j \right\rangle}

where represents a normalised ns Slater-type orbital.

Split-charge formalism[edit]

[5]

Fluctuating-charge formalism[edit]

QTPIE[edit]

[6]

See also[edit]

References[edit]