Building up a body centered cubic lattice: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| m (New page: * Consider: # a Cubic Simulation box of length <math>\left. L  \right. </math> # a number of lattice positions, <math> \left. M \right. </math> given by:   : <math> \left. M = 2 m^3    \ri...) | Carl McBride (talk | contribs)   (Added a Jmol applet + category.) | ||
| (5 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| {{Jmol_general|Body_centered_cubic_lattice.xyz|A body centered cubic lattice}} | |||
| * Consider: | * Consider: | ||
| # a  | # a cubic simulation box whose sides are of length <math>\left. L  \right. </math> | ||
| # a number of lattice positions, <math> \left. M \right. </math> given by | # a number of lattice positions, <math> \left. M \right. </math> given by <math> \left. M = 2 m^3    \right. </math>, with <math> m </math> being a positive integer | ||
| * The <math> \left. M \right. </math> positions are those given by: | * The <math> \left. M \right. </math> positions are those given by: | ||
| :<math> | |||
| <math> | |||
| \left\{ \begin{array}{l} | \left\{ \begin{array}{l} | ||
| x_a = i_a \times (\delta l)  \\ | x_a = i_a \times (\delta l)  \\ | ||
| Line 17: | Line 13: | ||
| \right\} | \right\} | ||
| </math> | </math> | ||
| where the indices of a given valid site <math>(i_a,j_a,k_a)</math> must be all  | where the indices of a given valid site <math>(i_a,j_a,k_a)</math> must fulfill: | ||
| * <math> i_a, j_a, k_a </math> must be either all odd or all even. | |||
| * <math> 0 \le i_a \le 2 m </math> | |||
| * <math> 0 \le j_a \le 2 m </math> | |||
| * <math> 0 \le k_a \le 2 m </math> | |||
| and  | |||
| <math> | <math> | ||
| \left. | \left.\delta l = L/(2m) | ||
| \delta l = L/(2m) | |||
| \right. | \right. | ||
| </math> | </math> | ||
| == Atomic position(s) on a cubic cell == | |||
| * Number of atoms per cell: 2  | |||
| * Coordinates: | |||
| Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math> | |||
| Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( l/2, l/2, l/2 \right) </math> | |||
| Cell dimensions:  | |||
| *<math> a=b=c = l </math> | |||
| *<math> \alpha = \beta = \gamma = 90^0 </math> | |||
| [[category: computer simulation techniques]] | |||
| [[category: Contains Jmol]] | |||
Latest revision as of 13:28, 22 July 2009
| <jmol> <jmolApplet> <script>set spin X 10; spin on</script> <size>200</size> <color>lightgrey</color> <wikiPageContents>Body_centered_cubic_lattice.xyz</wikiPageContents> </jmolApplet></jmol> | 
- Consider:
- a cubic simulation box whose sides are of length
- a number of lattice positions, given by , with being a positive integer
- The positions are those given by:
where the indices of a given valid site must fulfill:
- must be either all odd or all even.
and
Atomic position(s) on a cubic cell[edit]
- Number of atoms per cell: 2
- Coordinates:
Atom 1:
Atom 2:
 
Cell dimensions: